期刊文献+

电池剩余放电时间预测的研究 被引量:2

Research on Prediction of Lead-Acid Batteries' Remaining Discharge Time
下载PDF
导出
摘要 针对9个具体放电电流的放电曲线建立了二次函数模型,并求得各模型的平均相对误差(MRE),拟合出相应的函数关系后代入二次模型中即得任意放电电流的放电曲线整体模型,并计算出整体模型的MRE。最后讨论了同一电池以同一电流放电时放电时间所遵循的规律随衰减状态而变化的问题,对此建立了参数受约束的二次模型,根据模型补全了电池衰减状态下已放电时间数据,预测了电压对应的剩余放电时间。 This article presented the quadratic models for discharge curves according to 9 current values, and the mean relative errors ( MRE ) for the models were obtained. After the parameters were fitted and substituted into the expression , the global model for arbitrary current was obtained, and its MRE was computed. At last, the laws of remaining discharge time of the same battery in the same discharge current but in different decaying states were studied and applied to complement the data of the decaying state 3 ,which yields the remaining discharge time.
作者 蒋剑军
出处 《电器与能效管理技术》 2017年第7期73-78,共6页 Electrical & Energy Management Technology
关键词 铅酸电池 剩余放电时间 预测 平均相对误差 lead-acid batteries remaining discharge time prediction mean relative errors
  • 相关文献

参考文献3

二级参考文献31

  • 1王海燕,杨方廷,刘鲁.标准化系数与偏相关系数的比较与应用[J].数量经济技术经济研究,2006,23(9):150-155. 被引量:99
  • 2HEI W, WILLIARD N, OSTERMAN M, et al. Prognos- tics of lithium-ion batteries based on Dempster-Shaier theory and the Bayesian Monte Carlo method [ J]. J Power Sources, 2011, 196(23):10314-10321. 被引量:1
  • 3LEE S, KIM J, LEE J, et al. State-of-charge and ca- pacity estimation of lithium-ion battm7 using a new open-circuit voltage versus state-of-charge E j]. Journal of Power Sources, 2008, 185(2) : 1376-1373. 被引量:1
  • 4XING Y J, EDEN W M, KWOK-LEUNG M T, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries [ J]. Microelectron- ics Reliability, 2013, 53(6): 811-820. 被引量:1
  • 5WIDODO A, SHIM M, CAESARENDRA W, et al. In- telligent prognostics and health management [ Z ]. Den- ver: CO, 2008: 6-9. 被引量:1
  • 6SAHA B, GOEBEL K, POLL S. An integrated ap- proach to battery health monitoring using Bayesian re- gression and state estimation I J]. 2007 IEEE Autotest- con, 2007 (1-2) : 646-653. 被引量:1
  • 7LAN Y, SOH Y C, HUANG G B. Ensemble of online sequential extreme learning machine [ J ]. Neurocom- puting, 2009(72): 3391-3395. 被引量:1
  • 8ZHAO J, WANG Z, PARK D S. Online sequential ex- treme learning machine with forgetting mechanism [ J ]. Neurocomputing, 2012, 87 (11) : 79-89. 被引量:1
  • 9黄海宏,杨仁增,王海欣.基于灰色模型的多电平逆变器的预测控制[J].电子测量与仪器学报,2010,24(12):1126-1131. 被引量:6
  • 10张頔,马彦,柏庆文.基于自适应卡尔曼滤波的锂离子电池SOC估计[J].汽车技术,2011(8):42-45. 被引量:12

共引文献54

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部