期刊文献+

基于自适应卡尔曼滤波的锂离子电池SOC估计 被引量:12

Estimation of State of Charge of Li-ion Battery Based on Adaptive Kalman Filtering
下载PDF
导出
摘要 采用自适应卡尔曼滤波方法,基于锂离子动力电池的等效电路模型,在未知干扰噪声环境下,在线估计电动汽车锂离子动力电池荷电状态(SOC)。仿真结果表明,采用自适应卡尔曼滤波方法估计的SOC误差小于2.4%,有效降低了电动汽车行驶时电池管理系统所受到的未知干扰噪声影响,SOC估计精度高于扩展卡尔曼方法,且具有较好的鲁棒性。 On-line estimation of state of charge(SOC) of electric vehicle Li-ion battery is made under unknown interfering noise based on the equivalent circuit model of the Li-ion battery,with adaptive Kalman filtering method.Simulation results show that adaptive Kalman filtering method can estimate SOC with error less than 2.4%,the method effectively minimizes effect of unknown interfering noise on battery management system during operation of electric vehicle,SOC estimate accuracy of this method is higher than extended Kalman filtering method,and has good robustness.
机构地区 吉林大学
出处 《汽车技术》 北大核心 2011年第8期42-45,50,共5页 Automobile Technology
基金 国家工信部"新能源汽车电子控制系统研发与产业化"项目 项目编号:A08-BK-2010 教育部高校吉林大学基本科研业务费科学前沿与交叉学科创新项目 项目编号:450060323306
关键词 锂离子电池 荷电状态 自适应卡尔曼滤波 Li-ion batteries State of Charge(SOC) Adaptive Kalman Filtering
  • 相关文献

参考文献15

  • 1田光宇,彭涛,林成涛,陈全世.混合动力电动汽车关键技术[J].汽车技术,2002(1):8-11. 被引量:43
  • 2曹莹瑜,齐铂金,郑敏信.电动汽车电池管理系统抗干扰设计[J].工业控制计算机,2005,18(12):67-68. 被引量:8
  • 3Sabine Piller, Marion Perrin, Andreas Jossen. Methods for State-Of-charge Determination and Their Applications. Journal of Power Sources, 2001, 96(1 ): 113-120. 被引量:1
  • 4S.Malkhandi. Fuzzy logic-based learning system and estimation of state of charge of lead-acid battery. Engineering Applications of Arti?cial Intelligence, 2006, 19(5): 479-485. 被引量:1
  • 5S. Grewal, D. A. Grant. A novel technique for modeling the state of charge of lithium ion batteries using artificial neural networks. In Proc. IEEE ITEC, Bristol Univ.UK, 2001: 174-179. 被引量:1
  • 6G. L. Plett. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 3: State and parameter estimation. Journal of Power Sources,2004, 134(2): 277-292. 被引量:1
  • 7黄文华,韩晓东,陈全世,林成涛.电动汽车SOC估计算法与电池管理系统的研究[J].汽车工程,2007,29(3):198-202. 被引量:79
  • 8A. P. Sage, G. W. Husa. Adaptive Filtering with Unknown Prior Statistics. Proceedings of Joint Automatic Control Conference, 1969: 760-769. 被引量:1
  • 9K.K.C. Yu, N.R. Watson, J. Arrillaga. An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking. IEEE Trans. Power Delivery, 2005, 20 (2): 1577-1584. 被引量:1
  • 10唐磊,赵春霞,唐振民,成伟明,张浩峰.基于模糊自适应Kalman滤波的GPS/DR数据融合[J].控制理论与应用,2007,24(6):891-894. 被引量:14

二级参考文献30

共引文献139

同被引文献113

引证文献12

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部