期刊文献+

癫痫治疗领域脑电信号分析应用及其研究进展 被引量:1

Electroencephalogram signal analysis and its research progress in the field of epilepsy treatment
原文传递
导出
摘要 癫痫是一种严重的慢性神经系统疾病,可通过分析由脑神经元产生的脑电信号对其进行检测,因此脑电图成为诊断癫痫的关键工具。应用特异性方法对脑电信号进行处理和分析,在探索大脑工作机制和脑神经系统疾病的诊断方面具有重要意义。本文通过对脑电图信号的特征提取、特征分类等相关分析方法(如主成分分析、独立成分分析、小波变换、线性判别分析、支持向量机、人工神经网络和决策树等)进行总结,阐述了其在癫痫治疗中的应用,概括展示了近年来的研究进展。为癫痫发作的检测和分类以及未来的研究方向提供了一定的借鉴和参考。 Epilepsy is a serious chronic neurological disorder that can be detected by analysing the brain signals generated by brain neurons,with electroencephalography(EEG)becoming a key tool in the diagnosis of epilepsy.The application of specific methods for processing and analysing EEG signals is important in exploring the working mechanisms of the brain and in the diagnosis of neurological disorders of the brain.The article describes the application of EEG signals in epilepsy treatment through feature extraction,feature classification and other related analysis methods.The article presents an overview of recent research advances through the use of principal component analysis,independent component analysis,wavelet transform,linear discriminant analysis,support vector machine,artificial neural network and decision tree.It provides some reference for the detection and classification of seizures and future research directions.
作者 洪俊 熊鲲 毛之奇 Hong Jun;Xiong Kun;Mao Zhiqi(Department of Neurobiology and Human Anatomy,School of Basic Medical Science,Central South University,Changsha 410013,China;Neurosurgery Department,Chinese People′s Liberation Army General Hospital,Beijing 100853,China)
出处 《中华神经科杂志》 CAS CSCD 北大核心 2022年第4期391-400,共10页 Chinese Journal of Neurology
基金 科技创新2030-“脑科学与类脑研究”重大项目(2021ZD0200407) 国家自然科学基金面上项目(81871087)。
关键词 癫痫 脑电描记术 信号处理 计算机辅助 数值分析 计算机辅助 诊断 Epilepsy Electroencephalography Signal processing,computer-assisted Numerical analysis,computer-assisted Diagnosis
  • 相关文献

参考文献13

二级参考文献68

  • 1张振,杜守洪,陈子怡,田翔华,周毅,张洋.近似熵与SVM在自动分类癫痫脑电信号中的应用[J].生物医学工程研究,2013,32(2):74-79. 被引量:4
  • 2杨丽华,戴齐,郭艳军.KNN文本分类算法研究[J].微计算机信息,2006,22(07X):269-270. 被引量:24
  • 3王清,马华,孙静,韩忠东.改进的KNN算法及其在医学图像处理中的应用[J].泰山医学院学报,2006,27(6):564-566. 被引量:5
  • 4.生物医学信号处理[M].北京:清华大学出版社,1989.249-285. 被引量:1
  • 5Makeig S, Bell A J, Jung TP, et al. Independent Component Analysis of electroencephalographic data, Advances in Neural Information Processing Systems, 1996, 8: 145. 被引量:1
  • 6Sanei S, Chambers J A. EEG signal processing. Chiches- ter.. John Wiley & Sons Ltd, 2007. 被引量:1
  • 7Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalography and Clinical Neurophysiolo- gy, 1982, 54(5): 530-540. 被引量:1
  • 8Khan Y U, Gotman J. Wavelet based automatic seizure de- tection in intracerebral electroencephalogram. Clinical Neu- rophysiology, 2003, 114(5): 898-908. 被引量:1
  • 9Gardner A, Krieger A, Vachtsevanos G, et al. One-class novelty detection for seizure analysis from intracranial EEG. Journal of Machine Learning Research, 2005, 7: 1025-1044. 被引量:1
  • 10Temko A, Thomas E, Boylan G, et al. An SVM-based system and its performance for detection of seizures in neo- nates, In: Proceedings of IEEE International Conference on Engineering in Medicine and Biology, 2009 : 2643-2646. 被引量:1

共引文献127

同被引文献26

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部