摘要
针对无人机室内定位容易出现漂移的问题,提出基于改进多状态约束卡尔曼滤波器(MSCKF)的无人机(UAV)室内定位方法.该方法在MSCKF的框架下,提出高鲁棒性、低时延的标志点检测方法.利用在世界坐标系下坐标已知的标志点计算得到无人机位姿,实现惯性测量单元(IMU)信息与单目视觉信息融合以及无人机位姿修正.对提出的定位方法进行测试.测试结果表明,该方法的定位误差小于0.266 m,与OpenVins和LARVIO开源算法相比,定位精度提高了54.6%以上.
An indoor positioning method of unmanned aerial vehicle(UAV)based on improved multi-state constraint Kalman filter(MSCKF)was proposed aiming at the problem that the indoor positioning of UAV is prone to drift.A high robustness and low delay detection method was proposed under the framework of MSCKF.The pose of UAV was calculated with the help of the known positions of the mark points in world coordinate system.Then inertial measurement unit(IMU)data and monocular vision data fusion and UAV pose correction were realized.The proposed positioning method was tested.The simulation results show that the positioning error of the proposed method was within 0.266 m,and the positioning accuracy was improved by more than 54.6%compared to OpenVins and LARVIO.
作者
王思鹏
杜昌平
宋广华
郑耀
WANG Si-peng;DU Chang-ping;SONG Guang-hua;ZHENG Yao(School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China)
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2022年第4期711-717,共7页
Journal of Zhejiang University:Engineering Science
基金
装备预研教育部联合基金资助项目(6141A02011803)。