期刊文献+

结构光照明超分辨成像图像重建算法研究进展 被引量:4

Recent Advances in Structured Illumination Microscope Super-Resolution Image Reconstruction
原文传递
导出
摘要 结构光照明超分辨显微镜(SIM)已成为分子细胞生物领域进行活细胞动态过程实时观测的重要工具。SIM作为一种计算成像方法,其成像质量很大程度依赖于超分辨图像重建算法的优劣。近5年来,陆续报道了近10种针对不同条件下的SIM超分辨成像开源算法,基于深度学习的SIM重建算法也层出不穷。理解各算法的原理及异同从而在实际成像实验中选择合适的成像算法,成为了SIM成像技术应用的重要环节。首先介绍了SIM成像的原理;然后分别从结构光参数估计、频谱优化的重建算法、基于深度学习的重建算法三方面介绍了SIM重建算法的最新进展,为SIM研究者及用户提供参考;最后总结了高质量SIM超分辨图像重建仍需解决的问题。 Structured illumination microscopy(SIM)has become one of the most popular super-resolution(SR)instruments for dynamic imaging of live cells.However,the final SR images of SIM depends heavily on the image reconstruction algorithms,which could dramatically affect the image quality.In the past five years,nearly 10 opensource software packages for SIM reconstruction have been developed with advantage on different situations.And deep learning based SIM reconstruction algorithms has also been reported.Understanding the principles and differences of each algorithm becomes a priority to select the appropriate algorithms for practical applications.This review firstly introduces the principle of SIM,and then presents the latest advances for the reference of SIM researchers and users from three aspects:estimation of structured illumination parameter,spectrum optimization,and deep learning based reconstruction.Finally,the remaining issues that need to be addressed further for highquality SIM super-resolution image reconstruction are summarized.
作者 唐于珺 王林波 文刚 李辉 Tang Yujun;Wang Linbo;Wen Gang;Li Hui(School of Biomedical Engineering,University of Science and Technology of China,Suzhou,Jiangsu 215163,China;Jiangsu Key Laboratory of Medical Optics,Suzhou Institute of Biomedical Engineering and Technology,Chinese Academy of Sciences,Suzhou,Jiangsu 215163,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第6期136-147,共12页 Laser & Optoelectronics Progress
基金 国家重点研发计划项目(2017YFC0110101) 国家自然科学基金(62141506)。
关键词 医用光学 荧光显微镜 结构光照明 超分辨成像 参数估计 频谱优化 深度学习 medical optics fluorescence microscopy structured illumination super-resolution imaging parameter estimation spectrum optimization deep learning
  • 相关文献

参考文献7

二级参考文献16

共引文献72

同被引文献18

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部