期刊文献+

利用改进型VGG标签学习的表情识别方法 被引量:4

Expression recognition method using improved VGG tag learning
下载PDF
导出
摘要 针对图像表情判别精度低下的问题,提出一种基于改进型VGG-16网络的人脸表情识别方法。为解决传统方法存在像素特征分布不均的问题,采用基于改进的高斯混合模型进行图像特征数据的有效提取;基于改进的VGG-16深度神经网络,增强人脸表情识别的训练样本,实现对采集的图像数据多表情多场景精准区分。基于通用数据集及自采集数据集进行仿真实验,验证所提方法在表情识别的准确度和速度方面都展现出一定优势,尤其在黑暗条件下识别准确率可达90%左右。 Aiming at the problem of low accuracy of image expression discrimination,a facial expression recognition method based on improved VGG-16 network was proposed.To solve the problem of uneven pixel feature distribution in traditional methods,an improved Gaussian mixture model was used to effectively extract image feature data.Based on the improved VGG-16 deep neural network,the training samples for facial expression recognition were enhanced to achieve accurate discrimination of the collected image data with multiple expressions and multiple scenes.Simulation experiments based on a common data set and self-collected data set,verify that the proposed method in terms of accuracy and speed expression recognition shows some advantages,especially in dark conditions,its recognition accuracy rate reaches 90%.
作者 程学军 邢萧飞 CHENG Xue-jun;XING Xiao-fei(College of Information Engineering,Luohe Institute of Technology,Henan University of Technology,Luohe 462000,China;School of Computer Science and Cyber Engineering,Guangzhou University,Guangzhou 528225,China)
出处 《计算机工程与设计》 北大核心 2022年第4期1134-1144,共11页 Computer Engineering and Design
基金 河南省科技攻关计划基金项目(222102110011) 国家自然科学基金河南省联合基金项目(U1604149) 河南省教育厅自然科学基金项目(19A520006)。
关键词 表情识别 VGG-16网络模型 高斯混合模型 相关情绪标签分布学习 正则化学习 红外图像 expression recognition VGG-16 network model Gaussian mixture model correlation emotion label distribution learning regularization learning infrared image
  • 相关文献

参考文献9

二级参考文献40

共引文献160

同被引文献29

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部