期刊文献+

基于电力物联网技术的低压智能台区应用方案 被引量:4

The Smart Station Area Based on Power Internet of Things Technology Construction Scheme
下载PDF
导出
摘要 随着电力物联网技术的发展,传统的低压台区应用方案已不能满足智能台区的建设需要。本文提出一种基于电力物联网技术的低压智能台区应用方案,利用电力物联网智能感知设备,精确感知低压台区的线路及关键设备的运行状态。该方案实现了低压台区运行状态感知、精益管理、有序用电、新能源接入管理等核心业务,有力支撑新型电力系统建设方案。 With the development of power Internet of things technology,the traditional application scheme of low-voltage station area can not meet the construction needs of intelligent station area.This paper presents an application scheme of low-voltage intelligent platform area based on power Internet of things technology,which uses power Internet of things intelligent sensing equipment to accurately sense the operation status of lines and key equipment in low-voltage platform area.The scheme realizes core businesses such as low-voltage station area operation state perception,lean management,orderly power consumption,new energy access management,and strongly supports the new power system construction scheme.
作者 王冬阳 张彤 李昭 董天文 王斌 WANG Dong-yang;ZHANG Tong;LI Zhao;DONG Tian-wen;WANG Bin(State Grid Tianjin Electric Power Company Chengnan Power Supply Branch,Tianjin 300201,China)
出处 《价值工程》 2022年第14期114-116,共3页 Value Engineering
关键词 智能台区 物联网 新能源接入 有序用电 intelligent station area Internet of Things new energy access orderly power consumption
  • 相关文献

参考文献8

二级参考文献94

  • 1常文婧,白涧.用电信息采集系统模式下的台区用户属性判定[J].安徽电力,2013,30(1):56-58. 被引量:7
  • 2唐五湘.T型关联度及其计算方法[J].数理统计与管理,1995,14(1):34-37. 被引量:148
  • 3张峰.有序用电指标体系及其评价方法的研究[R].北京:华北电力大学,2009. 被引量:2
  • 4吴猛.基于Web的数据可视化技术初探[J].福建电脑,2007,23(12):58-59. 被引量:6
  • 5Michael Schroeck, Rebecca Shockley, Peter Tufano, et al. Analytics: the real-world use of big data[EB/OL]. [2014-08]. http://public. dhe.ibm.com/common/ssi/ecm/en/gbe0352 lusen/GBE03521USEN. PDF. 被引量:1
  • 6Nimmagadda S L, Dreher H V. Big-data integration methodologies for effective management and data mining of petroleum digital ecosystems[C]// 2013 7th IEEE International Conference on Digital Ecosystems and Technologies(DEST). Menlo Park, CA: IEEE, 2013:148-153. 被引量:1
  • 7Greene C S, Tan J, UngM, et al. Big data bioinformatics[J]. Journal of Cellular Physiology, 2014, 229(12): 1896-1900. 被引量:1
  • 8Kezunovic Mladen, Xie Le, Grijalva Santiago. The role of big data in improving power system operation and protection[C]//Bulk Power System Dynamics and Control-IX Optimization, Security and Control of the Emerging Power Grid(IREP), 2013 IREP Symposium. Rethymno: IEEE, 2013: 1-9. 被引量:1
  • 9Ilic D, Karnouskos S, Wilhelm M. A comparative analysis of smart metering data aggregation performance[C]// 2013 llth IEEE International Conference on Industrial Informatics (IND/N). Bochum: IEEE, 2013: 434-439. 被引量:1
  • 10Corporation IBM. Managing big data for smart grids and smart meters[EB/OL]. [2014-08]. http://www.smartgridnews.eom/artman/ uploads/1/IBM_anaytics~aaper.pdf. 被引量:1

共引文献290

同被引文献19

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部