期刊文献+

基于T型灰色关联度和KNN算法的低压配电网台区拓扑识别方法 被引量:35

Topology identification method of a low voltage distribution network based on T-type grey correlation degree and KNN algorithm
下载PDF
导出
摘要 针对目前低压配电网台区拓扑存在记录不准确,人工排查成本高,准确率低的问题。提出了一种基于T型灰色关联度和K-最近邻(K-nearest Neighbor,KNN)算法的低压配电网拓扑自动识别方法。首先计算用户与所属台区电压的T型灰色关联度,对低于设定阈值的可疑用户用KNN算法判断所属台区,完成户变关系识别工作。然后计算新户变关系下用户之间电压的T型灰色关联度,结合拓扑结构图识别馈线中的可疑用户。最后找出与可疑用户最相关的用户,依据电压沿着馈线逐渐降低定位可疑用户在馈线中的位置。算例分析结果表明,该方法能自动识别用户所属台区和馈线,准确率高,实用性好。 There are errors in the topology record of the low-voltage distribution network,and its manual verification has high cost and low accuracy.An automatic topology identification method of a low-voltage distribution network based on T-type grey correlation degree and the K-Nearest Neighbor(KNN)algorithm is proposed.First,the T-type grey correlation degrees of the voltages between the users and the station area are calculated,and the KNN algorithm is used to judge the suspicious users of a station area by the set threshold value to identify the relationship between the user and the station area.Then,the T-type grey correlation degrees between user voltages are calculated under the new station area,and the suspicious users in the feeder are identified by the topological structure diagram.Finally,the users related to the suspicious users are found,and the location of the suspicious users in the feeder is located according to the characteristic that the voltage decreases gradually along the feeder.The results of case analysis show that the proposed method can automatically identify the user's station area and feeder line with high accuracy and good practicability.
作者 陈招安 黄纯 张志丹 江亚群 CHEN Zhaoan;HUANG Chun;ZHANG Zhidan;JIANG Yaqun(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;Electric Power Research Institute of State Grid Hunan Electric Power Company,Changsha 410007,China)
出处 《电力系统保护与控制》 EI CSCD 北大核心 2021年第1期163-169,共7页 Power System Protection and Control
基金 国家自然科学基金项目资助(51677060) 国网湖南省电力公司科技项目资助(5216A518000T)。
关键词 低压配电网 拓扑结构 T型灰色关联度 KNN算法 台区 low voltage distribution network topology T-type grey correlation degree KNN algorithm station area
  • 相关文献

参考文献15

二级参考文献145

  • 1常文婧,白涧.用电信息采集系统模式下的台区用户属性判定[J].安徽电力,2013,30(1):56-58. 被引量:7
  • 2Zhen Yan, Zeng Lingkang, Chen Xi, Li Xiangzhen and Liu Jianming State Grid Information & Telecommunication Company Ltd.,.Architecture of Power Internet of Things[J].Electricity,2011,22(5):10-15. 被引量:5
  • 3黄洪宇,林甲祥,陈崇成,樊明辉.离群数据挖掘综述[J].计算机应用研究,2006,23(8):8-13. 被引量:42
  • 4吴猛.基于Web的数据可视化技术初探[J].福建电脑,2007,23(12):58-59. 被引量:6
  • 5Michael Schroeck, Rebecca Shockley, Peter Tufano, et al. Analytics: the real-world use of big data[EB/OL]. [2014-08]. http://public. dhe.ibm.com/common/ssi/ecm/en/gbe0352 lusen/GBE03521USEN. PDF. 被引量:1
  • 6Nimmagadda S L, Dreher H V. Big-data integration methodologies for effective management and data mining of petroleum digital ecosystems[C]// 2013 7th IEEE International Conference on Digital Ecosystems and Technologies(DEST). Menlo Park, CA: IEEE, 2013:148-153. 被引量:1
  • 7Greene C S, Tan J, UngM, et al. Big data bioinformatics[J]. Journal of Cellular Physiology, 2014, 229(12): 1896-1900. 被引量:1
  • 8Kezunovic Mladen, Xie Le, Grijalva Santiago. The role of big data in improving power system operation and protection[C]//Bulk Power System Dynamics and Control-IX Optimization, Security and Control of the Emerging Power Grid(IREP), 2013 IREP Symposium. Rethymno: IEEE, 2013: 1-9. 被引量:1
  • 9Ilic D, Karnouskos S, Wilhelm M. A comparative analysis of smart metering data aggregation performance[C]// 2013 llth IEEE International Conference on Industrial Informatics (IND/N). Bochum: IEEE, 2013: 434-439. 被引量:1
  • 10Corporation IBM. Managing big data for smart grids and smart meters[EB/OL]. [2014-08]. http://www.smartgridnews.eom/artman/ uploads/1/IBM_anaytics~aaper.pdf. 被引量:1

共引文献745

同被引文献371

引证文献35

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部