期刊文献+

利用卫星引力梯度确定地球重力场的张量不变方法研究 被引量:1

Tensor Invariant Method for Determining the Earth Gravity Field from Satellite Gravitational Gradient Data
原文传递
导出
摘要 应用张量不变理论对利用卫星重力梯度数据确定地球重力场的方法进行了研究,对张量不变观测方程的线性化处理、非全张量观测值的数据处理策略以及采用白噪声特性下的梯度观测值恢复地球重力场的精度等进行了数值分析。结果表明,张量不变解实现了不同观测值的联合求解,基于先验重力场模型的线性化方法在实现张量不变观测模型线性化处理的同时,提升了张量不变方法的模型解算精度,且初始参考模型的选择对解的收敛特性影响较小;在无噪声和白噪声条件下,利用先验位模型的球谐综合值代替低精度梯度分量实现非全张量梯度观测值的处理均是可行的,不会改变解的收敛速度和最终精度。 Objectives:The objective is to study the tensor invariant method for determining the Earth’s gravity field with satellite gravitational gradient data.Methods:The tensor invariant method does not depend on the acquisition of the spatial orientation information of the gradiometer,so it has a special advantage over the traditional methods in determining the earth gravity field.Numerical analyses are made for the linearization of tensor invariant observation equation,the processing of non-full tensor observation data,and the accuracy of gravity field recovery with the gradient data containing white noise.Results:The results show that the tensor invariant solution realizes the combine processing of the different tensor components.The tailored linearization effectively achieves the linearization of the tensor invariant observation model while the accuracy of gravity field model determined using tensor invariants is significantly higher than that of the single tensor component solution.Also,the choice of initial reference model exerts minor influence on the total iterative process.Conclusions:Due to the non-full tensor gradient observations,it is proposed to replace the low precision gradient component using the spherical harmonic synthesis of a priori gravity field model,which will not change the convergence and the accuracy of the solution even if the white noise exists in the observations because of the nadir-pointing characteristics of the gradiometer.
作者 朱广彬 常晓涛 瞿庆亮 周苗 ZHU Guangbin;CHANG Xiaotao;QU Qingliang;ZHOU Miao(Land Satellite Remote Sensing Application Center,Ministry of Natural Resources,Beijing 100048,China;Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology,Ministry of Natural Resources,Beijing 100830,China;College of Geomatics,Shandong University of Science and Technology,Qingdao 266590,China)
出处 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2022年第3期334-340,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(42174041) 高分对地观测重大专项(42-Y20A09-9001-17/18) 民用航天预先研究项目(D010103) 自然资源部地球观测与时空信息科学重点实验室经费(201907)。
关键词 张量不变 卫星引力梯度 线性化 重力场模型 tensor invariant satellite gravitational gradient linearization gravity field model
  • 相关文献

参考文献8

二级参考文献64

  • 1YU JinHai1,2,3 & ZHAO DongMing4 1 College of Earth Science, Graduate University of Chinese Academy of Sciences, Beijing 100049, China,2 Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China,3 State Key Laboratory of Astronautic Dynamics, Xi’an 710043, China,4 Zhengzhou Institute of Surveying and Mapping, Zhengzhou 450052, China.The gravitational gradient tensor’s invariants and the related boundary conditions[J].Science China Earth Sciences,2010,53(5):781-790. 被引量:7
  • 2于锦海,彭富清.超定大地边值问题的变分解及相关理论[J].中国科学(D辑),2007,37(1):39-45. 被引量:2
  • 3Pail R, Plank G. Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on parallel platform. J Geodesy, 2002, 76:462-474. 被引量:1
  • 4Pail R. A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery. J Geodesy, 2005, 79:231-241. 被引量:1
  • 5Holota P. Boundary value problems and invariants of the gravitational tensor in satellite gradiometry. In: Sanso F, Rummel R, eds. Theory of Satellite Geodesy and Gravity Field Determination. Lecture Notes Earth Sci, 1989, 25:447-457. 被引量:1
  • 6Sacerdote F, Sanso F. Some problems related to satellite gradiometry. Bull Geodesy, 1989, 63:405-415. 被引量:1
  • 7Vermeer M. Observable quantities in satellite gradiometry. Bull Geodesy, 1990, 64:347-361. 被引量:1
  • 8Baur O, Sneeuw S, Grafarend E W. Methodology and use of tensor invariants for satellite gravity gradiometry. J Geodesy, 2008, 82: 279- 293. 被引量:1
  • 9Yu J H, Jekeli C, Zhu M. Analytical solutions of the Dirichlet and Neumann boundary value problems with an ellipsoid boundary. J Geodesy, 76:653-667. 被引量:1
  • 10Martinec Z. Green's function solution to spherical gradiometric boundary value problems. J Geodesy, 2003, 77:41-49. 被引量:1

共引文献26

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部