期刊文献+

由GOCE引力场模型和CNES-CLS2010平均海面高计算的稳态海面地形 被引量:6

Mean dynamic topography calculated by GOCE gravity field model and CNES-CLS2010 mean sea surface height
下载PDF
导出
摘要 利用欧空局发布的三组GOCE引力场模型及CNES-CLS 2010平均海面高数据,计算得到了全球的稳态海面地形,进而得到了全球地转流速度图.在此基础上重点对黑潮进行了对比分析.结果表明:GOCE不同组解的稳定性较好,所计算的稳态海面地形的差异基本在厘米量级内,这间接表明了GOCE引力场模型提供的大地水准面的精度达到了厘米量级.此外,通过将GOCE与GRACE相应结果进行对比发现,GOCE可提供更多的局部信息,特别是对于流速快、水流窄的边界流,如黑潮、墨西哥湾流等,GOCE所得结果更加清晰,速度也更精确. Global mean dynamic topographies (MDT) are computed with three groups of GOCE gravity field models and CNES-CLS2010 mean sea surface height (MSS), and then geostrophic surface currents are also computed. Finally Kuroshio is analyzed emphatically. The results show that the different GOCE gravity field models are stable, i. e. , the differences of MDT calculated using different GOCE gravity field models are all less than several centimeters. It indicates the accuracy of geoid provided by GOCE arrives at magnitude of centimeter. The comparison with GRACE shows that GOCE can provide more local information of the currents. Especially for the boundary currents such as Kuroshio and the Gulf Stream which are fast and narrow, the result from GOCE is much clearer and the velocity is more accurate. Hence, GOCE is more appropriate for research on the currents than GRACE.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第6期1850-1856,共7页 Chinese Journal of Geophysics
基金 国家自然科学基金(41074015 41104047) 武汉大学地球空间环境与大地测量教育部重点实验室开放基金(11-01-07)共同资助
关键词 GOCE引力场模型 稳态海面地形 洋流 GOCE gravity field model Mean dynamic topography Ocean current
  • 相关文献

参考文献26

  • 1Balmino G, Rummel R, Visser P, et al. Gravity Field and Steady-State Ocean Circulation Mission. The Four Candidate Earth Explorer Core Missions, ESA Publications Division, 1999. 被引量:1
  • 2Rummel R, Gelderen M V, Koop R, et al. Spherical Harmonic Analysis of Satellite Gradiometry. Netherlands: Delft: Nederlandse Commissie Voor Geodesie, 1993. 被引量:1
  • 3Visser P. Gravity field determination with GOCE and GRACE. Adv. SpaceRes., 1999, 23(4): 771-776. 被引量:1
  • 4Klees R, Koop R, Visser P, et al. Efficient gravity field recovery from GOCE gravity gradient observations. Journalof Geodesy, 2000, 74(7-8): 561-571. 被引量:1
  • 5Pail R, Plank G. Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. JournalofGeodesy, 2002, 76(8): 462-474, doi: 10. 1007/ s00190-002-0277-Z. 被引量:1
  • 6Ditmar P, Klees R, Kostenko F. Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data. Journal of Geodesy, 2003, 76 (11/ 12): 690-705, doi: I0. 1007/s00190-O02-0298-x. 被引量:1
  • 7Baur O, Sneeuw N, Grafarend E W. Efficient GOCE satellite gravity field recovery based on least-squares using QR decomposition. Journal of Geodesy, 2008, 82 (4/5) : 207- 221, doi: 10. 1007/s00190-007-0178-5. 被引量:1
  • 8罗志才.利用卫星重力梯度数据确定地球重力场的理论和方法[博士论文].武汉:武汉大学,1996. 被引量:2
  • 9于锦海,赵东明.引力梯度不变量与相关边界条件[J].中国科学(D辑),2010,40(2):178-187. 被引量:9
  • 10徐新禹.卫星重力梯度及卫星跟踪卫星数据确定地球重力场的研究[博士论文].武汉:武汉大学,2008. 被引量:1

二级参考文献71

共引文献46

同被引文献41

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部