期刊文献+

一种基于麦克风阵列用于分离单极子和偶极子声源的方法 被引量:1

A method for separation of monopole and dipole sources based on phased microphone array
原文传递
导出
摘要 基于单极子假设的波束成形算法作为一种声场可视化技术,在声源识别中得到了广泛应用。但是在实际工程应用中,声源的类型较为复杂,基于单一声源假设的波束成形无法有针对性地识别不同类型的声源。本文提出了一种混合反卷积方法来分离含有单极子和偶极子的组合声源,该方法构造了波束成形输出与实际声源之间的线性方程,通过求解该线性方程,可以将单极子和偶极子从组合声源中提取出来,并通过多组仿真和实验来检验该混合反卷积算法。结果表明此方法确实可以有效地分离组合声源,并且保证了声源强度的准确性,即使在包含多个声源时依然有效。此方法有望应用于航空发动机气动噪声识别,从高速喷流噪声中提取目标源,更好地研究喷流噪声的成分。 As an acoustic field visualization technology,beamforming based on the monopole assumption has been widely applied in identifying acoustic sources.However,in practical engineering applications,complex types of sound sources make it difficult for beamforming based on the single sound source assumption to identify different types of sound sources pertinently.This paper proposes a hybrid deconvolution method to separate the combined sources containing monopoles and dipoles.The approach constructs a linear equation between the beamforming output and the actual sound source distribution,and monopoles and dipoles can be extracted from the combined sources by solving this linear equation.Four simulation cases and three experimental cases are designed to check the hybrid deconvolution algorithm.The combined sources in the experiment are composed of a dipole formed by a cylindrical spoiler and a monopole caused by a speaker.The results indicate that this method can separate the combined sound sources effectively and ensure the accuracy of the sound source strength,despite the multipoles.This method is expected to be applied in aerodynamic noise recognition,extracting target sources from high-speed jet noise,and better studying the composition of jet noise.
作者 周纬 杨明绥 马威 ZHOU Wei;YANG Mingsui;MA Wei(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;AECC Shenyang Engine Research Institute,Shenyang 110015,China;School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China;Engineering Research Center of Gas Turbine and Civil Aero Engine,Ministry of Education,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2022年第2期213-224,共12页 Acta Aeronautica et Astronautica Sinica
基金 国家科技重大专项(2017-Ⅱ-003-0015)。
关键词 声源分离 组合声源 混合反卷积 线性方程 声源模型 sound sources separation combined sources hybrid deconvolution liner equation source model
  • 相关文献

参考文献3

二级参考文献28

  • 1Lu M H ,Jen M U. Source identification and reduction of engine noise [J]. Noise Control Engineering Journal,2010,58(3) :251- 258. 被引量:1
  • 2Batel M,Marroquin M. Noise source location techniques--simple to advanced applications[J]. Journal of Sound and Vibration, 2003,37 (3) =24-38. 被引量:1
  • 3Christensen J J, Hald J. Beamforming[J]. B&K Technical Re- view,2004(1) =1-31. 被引量:1
  • 4Christensen J J, Hald J. Improvement of cross spectral beam- forming[C]//Rorea: The 32nd International Congress and Ex- postion on Noise Control Engineering,2003. 被引量:1
  • 5Yardibi T, Bahr C, Zawodny N, et al. Uncertainty analysis of the standard delay and sum beamformer and array calibration[J]. Journal of Sound and Vibration,2010,329(13) :2654 2682. 被引量:1
  • 6Brooks F, Humphreys M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays [ C ]. Manchester: 10th AIAA/CEAS Aeroacoustics Conference,AIAA 2004-2954,2004. 被引量:1
  • 7Dougherty R P. Extensions of DAMAS and benefits and limita- tions of deconvolution in beamforming [C]. Monterey: llth AIAA/CEAS Aeroacoustics Conference, AIAA 2005-2961, 2005. 被引量:1
  • 8Ehrenfried K,Koop L. Comparison of iterative deconvolution al gorithms for the mapping of acoustic Sources[J]. AIAA Jour- nal,2007,45(7) :1584-1595. 被引量:1
  • 9Brusniak L. DAMAS2 validation for flight test airframe noise measurements[ C]. Berlin : Berlin Beamforming Conference ( Be- BeC), 2008. 被引量:1
  • 10Xenaki A,Jacobsen F,Roig E T,et al. Improving the resolution of beamIorming measurements on wind turbinesEC]. Sydney: Proceedings of 20th International Congress on Acoustics,2010. 被引量:1

共引文献12

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部