摘要
近年来变电站内在运电气设备异响现象时有发生,其中某些异响情况极易导致设备故障,有必要及时发现并处理,目前在变电站实际工作中,运维人员多采用耳听的方式判断异响位置。针对上述问题,该文分析变电站内电气设备异响来源,介绍基于DAMAS算法的声成像技术,研制一种可搭载于变电站巡检机器人的电力设备异响检测系统,研究GIS设备机械振动异响、高压端电晕放电异响两种变电站典型设备异响情况。研究结果表明:该方法可快速准确地判断两种异响位置,基于DAMAS算法的声成像技术可有效提升传统波束形成算法的定位精度,定位距离可达30 m以上,再结合异响信号图谱特征和异响位置结构信息,可初步判断缺陷类型,满足变电站内异响缺陷定位需求。
Abnormal noise of electrical equipment in substation occurs now and then.Some of the abnormal sound conditions can easily lead to equipment failure.Therefore,It is necessary to find and deal with it in time.At present,substation operation and maintenance personnel mostly use ear to judge abnormal sound position.Aiming at these problems above,this paper analyzes the source of abnormal noise of electrical equipment in substation.Acoustic imaging technology based on DAMAS algorithm is introduced.An automatic abnormal sound detection system for power equipment which can be equipped with substation patrol robot is developed.The abnormal response of GIS equipment and the abnormal response of high-voltage corona discharge are studied.The results suggested that the method can quickly and accurately determine the location of abnormal sound.Acoustic imaging technology based on DAMAS algorithm can effectively improve the positioning accuracy of traditional beamforming algorithms.The positioning range is over 30 meters.Combined with the map characteristics and location structure information of abnormal response signal,the fault type can be preliminarily judged.The requirements of substation internal abnormal sound fault location can satisfy.
作者
邵宇鹰
王枭
彭鹏
袁国刚
柯楠
SHAO Yuying;WANG Xiao;PENG Peng;YUAN Guogang;KE Nan(State Grid Shanghai Municipal Electric Power Company,Shanghai 200122,China;Shanghai Rhythm Electronic Technology Co.,Ltd.,Shanghai 201108,China)
出处
《中国测试》
CAS
北大核心
2021年第7期42-48,共7页
China Measurement & Test
基金
国网上海市电力公司科技项目资助(52097018000F)。
关键词
声成像技术
电力设备缺陷
异响检测
波束形成算法
DAMAS算法
acoustic imaging technology
power equipment failure
abnormal sound detection
beamforming
DAMAS algorithm