期刊文献+

基于深度学习算法的前列腺癌生化复发预测模型的建立 被引量:2

Establishment of a biochemical recurrence prediction model of prostate cancer based on deep learning algorithm
下载PDF
导出
摘要 目的利用深度学习算法建立前列腺癌生化复发预测模型,为前列腺癌根治术后患者早发现、早诊断、延长患者生存期提供参考。方法收集2001年3月—2016年11月北京大学第一医院泌尿外科接受前列腺癌根治术的442例患者的临床信息作为变量,应用五折交叉验证法将其划分为训练集(n=412)和验证集(n=30),采用深度学习算法(CNN-BiLSTM、CNN-LSTM、BiLSTM、CNN-BiGRU)建立前列腺癌生化复发预测模型,其中验证集用于评估模型性能和临床应用的可能性。结果在4种深度学习的算法中,CNN-BiLSTM算法准确率最高为76.7%,受试者工作曲线下面积为0.71。结论基于前列腺癌根治术后患者的多种临床信息,通过深度学习方法建立前列腺癌生化复发预测模型具有较高的准确率,能够为预测前列腺癌的生化复发提供一定参考。 Objective To establish a prediction model for biochemical recurrence of prostate cancer based on deep learning algorithm,and to provide reference for the early detection,early diagnosis and prolonged survival of patients after radical prosta⁃tectomy.Methods Clinical data of 442 patients who received radical prostatectomy in the Department of Urology,Peking Uni⁃versity First Hospital from Mar.2001 to Nov.2016 were collected.The patients were divided into training set(n=412)and vali⁃dation set(n=30)with five-fold cross-validation method.Deep learning algorithms inducing CNN-BiLSTM,CNN-LSTM,BiLSTM and CNN-BiGRU were used to establish a prediction model for the biochemical recurrence of prostate cancer.The vali⁃dation set was used to evaluate the performance of the model and possibility of clinical application.Results Among the 4 deep learning algorithms,CNN-BiLSTM algorithm had the highest accuracy of 76.7%,and the area under the receiver operating char⁃acteristic curve was 0.71.Conclusion Based on the clinical data of patients after radical prostatectomy,the prediction model of biochemical recurrence of prostate cancer established by deep learning method has high accuracy,which can provide certain ref⁃erence for predicting biochemical recurrence of prostate cancer.
作者 高文治 何宇辉 夏漫城 巩艳青 何世明 张建烨 周利群 郭跃先 李学松 GAO Wenzhi;HE Yuhui;XIA Mancheng;GONG Yanqing;HE Shiming;ZHANG Jianye;ZHOU Liqun;GUO Yuexian;LI Xuesong(Department of Urology,The First Medical Hospital of Peking University,Beijing 100000;Department of Urology,The Third Hospital of Hebei Medical University,Shijiazhuang 050000,China)
出处 《现代泌尿外科杂志》 CAS 2022年第3期230-233,共4页 Journal of Modern Urology
关键词 前列腺癌 生化复发 深度学习 预测模型 prostate cancer biochemical recurrence deep learning prediction model
  • 相关文献

参考文献9

二级参考文献104

  • 1袁丹凤,邱俊,李平昂,周峻峰,代维,周代君,梁毅,周继红.简述APACHE评分系统[J].伤害医学(电子版),2014,3(4):52-55. 被引量:7
  • 2曹希亮,高江平,韩刚,唐杰,洪宝发.以前列腺特异抗原水平分组筛查与前列腺穿刺阳性率的关系[J].中华外科杂志,2006,44(6):372-375. 被引量:21
  • 3Siegel R,Naishadham D,Jemal A.Cancer statistics,2013[J].CA Cancer J Clin,2013,63(1): 11-30. 被引量:1
  • 4Yuksel S,Dizman T, Yildizdan G,et al.Application of soft sets to diagnose the prostate cancer risk[J].J lnequal Appl,2013, (1):229. 被引量:1
  • 5Louie KS,Seigneurin A,Cathcart P, et al.Do prostate cancer risk models improve the predictive accuracy of PSA screening?A meta-analysis [J].Ann Oncol,2015,26(5): 1031-1032. 被引量:1
  • 6Huang Y, Isharwal S,Haese A,et al.Prediction of patient-specific risk and percentile cohort risk of pathological stage outcome using continuous prostate-specific antigen measurement, clinical stage and biopsy Gleason score[J].BJU Int,2011,107(10): 1562- 1569. 被引量:1
  • 7Smaletz O,Scher HI,Small EJ,et al.Nomogram for overall survival of patients with progressive metastatic prostate cancer after castration[J].J Clin Oncol,2002,20( 19):3972-3982. 被引量:1
  • 8Stephenson AJ,Scardino PT, Eastham JA,et al.Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy[J].J Clin 0ncol,2005,23(28):7005-7012. 被引量:1
  • 9Stephenson AJ, Scardino PT, Eastham JA,et al.Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy[J].J Natl Cancer Inst,2006,98(10 ): 715-717. 被引量:1
  • 10D'Amico AV, Whittington R,Malkowicz SB,et al.Biochemical outcome after radical prostatectomy or external beam radiation therapy for patients with clinically localized prostate carcinoma in the prostate specific antigen era[J].Cancer,2002,95(2):281-286. 被引量:1

共引文献657

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部