期刊文献+

基于深度学习的在线课堂学生专注度研究与实践 被引量:2

Research and Practice of Students’Concentration in Online Classroom Based on Deep Learning
下载PDF
导出
摘要 专注度是影响学生学习成效的重要因素。专注度与学习的关系非常密切,学生课堂上的专注度不足就会影响学习效果。教师获得学生专注度的准确信息是改善和提高学生课堂学习行为的重要依据。近年来,随着深度学习等人工智能技术的发展,为在线课程学生专注度检测研究提供了新的视角和思路。通过在线课堂获取学生课堂学习行为的影像,并利用深度学习技术对影像进行检测、分类等,得出学生在线课堂学习的专注度,使教师更为快捷、准确地了解到学生在在线课堂中的专注情况,有利于教师及时优化教学方法,提高学生的学习成效。 Concentration is the most important factor affecting students’learning effectiveness.There is a close relationship between concentration and learning.Students’lack of concentration in class will affect the learning effect.Teachers’obtaining accurate information about students’concentration is an important basis for improving students’classroom learning behavior.In recent years,with the development of artificial intelligence technology such as deep learning,it provides a new perspective and idea for the research of students’concentration detection in online classroom.Images of students’learning behavior in online classroom can be recorded,and then detected and classified with deep learning technology in order to make analysis of students’concentration in online classroom to allow teachers to understand the students’concentration in online classroom more quickly and accurately,which is conducive for teachers to optimize teaching methods and improve students’learning effectiveness in time.
作者 刘迪昱 Liu Diyu(Sichuan Open University,Chengdu Sichuan 610073;Sichuan Remote Electronic Press,Chengdu Sichuan 610073)
出处 《天津电大学报》 2021年第3期41-45,共5页 Journal of Tianjin Radio and Television University
基金 四川开放大学2021—2022年度教学改革重点项目“媒体融合环境下传统文化融入专业课程教学的策略研究”(课题批准号:XMZXJYXXXTYGL2021002Z)成果。
关键词 深度学习 在线课堂 专注度 检测 学习成效 deep learning online classroom concentration detection learning effectiveness
  • 相关文献

参考文献6

二级参考文献109

  • 1吴耀华.线性模型中M估计的渐近性质[J].应用数学学报,1994,17(3):401-410. 被引量:7
  • 2刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 3史忠值.神经网络[M].北京:高等教育出版社,2009. 被引量:6
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013. 被引量:2
  • 5聂舑(2012).基于脑电的情感识别[D].上海:上海交通大学. 被引量:1
  • 6Bartlett, M. S., Littlewort, G. C., & Frank M. G. et al. (2006). Automatic Recognition of Facial Actions in Spontaneous Expressions[J].Journal of Multimedia, 1 (6): 22-35. 被引量:1
  • 7Bashyal, S., & Venayagamoorthy, G.(2008). Recogni- tion of Facial Expression Using Gabor Wavelets and Learning Vector Quantization[J]. Engineering Applications of Artificial Intelligence, 21 (7): 1056-1064. 被引量:1
  • 8Cheon, Y., & Kim, D. (2009). Natural Facial Expres- sion Recognition Using Differential-AAM and Manifold Learn- ing[J].Pattern Recognition, (42): 1340- 1 350. 被引量:1
  • 9De Lathauwer, L., De Moor, B., & Vandewalle, .I. (2000). A Multilinear Singular Value Decomposition [J]. Society for Industrial and Applied Mathematics Journal of Matrix Analy- sis and Applications, 21(4): 1253-12781. 被引量:1
  • 10Ekman, P., & Friesen, W. V.(1975). Friesen Unmask- ing the Face[M]. New Jersey: Prentice Hall. 被引量:1

共引文献301

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部