期刊文献+

句子级状态下LSTM对谣言鉴别的研究 被引量:2

Rumor identification research based on sentence-state LSTM
下载PDF
导出
摘要 针对目前网络谣言鉴别研究,文本学习往往会受到文本读入内容过长导致长距离信息丢失或者是为了捕捉局部信息而依赖于长期输入表示从而影响鉴别结果。通过提出S-LSTM(sentence-state long short term memory networks)算法在保留字词节点信息的同时对句子进行聚合,从而保留句子的局部和全局信息,进而提升网络谣言鉴别的精确性和有效性。与TextGCN、Bi-GCN、Att_BiLSTM等几种深度网络谣言鉴别方法的对比中,该方法在两组模型测试上的准确率分别达到78.87%、90.30%,均取得了不错的效果,在考虑句子全局信息的情况下,其对谣言鉴别效果会有不错的提升。 Aiming at the current research on the identification of online rumors,text learning is often affected by the long-distance information loss due to the long-distance reading of the text or the long-term input representation in order to capture local information,which affects the identification result.This paper proposed the S-LSTM algorithm which used it to aggregate sentences while retaining the word node information,thereby retaining the local and global information of the sentence,thereby improving the accuracy and effectiveness of network rumors identification.In comparison with several deep network rumor identification methods such as TextGCN,Bi-GCN,and Att_BiLSTM,the accuracy of this method on the two sets of model tests reaches 78.87%and 90.30%,respectively,and achieves good results.The result proves that the rumor identification effect can be improved in the case of considering the global information of the sentence.
作者 庞源焜 张宇山 Pang Yuankun;Zhang Yushan(School of Statistics&Mathematics,Guangdong University of Finance&Economic,Guangzhou 510320,China)
出处 《计算机应用研究》 CSCD 北大核心 2022年第4期1064-1070,共7页 Application Research of Computers
基金 国家自然科学基金资助项目(61876207) 广东省基础与应用基础研究基金资助项目(2020A1515011405)。
关键词 谣言鉴别 S-LSTM 图神经网络 文本分类 rumor identification S-LSTM graph neural network text classification
  • 相关文献

参考文献4

二级参考文献27

  • 1夏松,林荣蓉,刘勘.网络谣言敏感词库的构建研究——以新浪微博谣言为例[J].知识管理论坛,2019(5):267-275. 被引量:6
  • 2Allport G W, Postman L. The Psychology of Rumor. Oxford:Henry Holt, 1947. 被引量:1
  • 3Kapferer J-N. Rumeurs:le Plus Vieux Média du Monde (in French). Paris:Le Seuil Editions, 1987. 被引量:1
  • 4Peterson W A, Gist N P. Rumor and public opinion. American J Soc, 1951, 57:159-167. 被引量:1
  • 5Budak C, Agrawal D, Abbadi A El. Limiting the spread of misinformation in social networks. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 665-674. 被引量:1
  • 6Castillo C, Mendoza M, Poblete B. Information credibility on twitter. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 675-684. 被引量:1
  • 7Nguyen D T, Nguyen N P, Thai M T. Sources of misinformation in online social networks:who to suspect? In:Proceedings of Military Communications Conference. Orlando:IEEE, 2012. 1-6. 被引量:1
  • 8Okazaki N, Nabeshima K, Watanabe K, et al. Extracting and aggregating false information from microblogs. In:Proceedings of the Workshop on Language Processing and Crisis Information, Nagoya, 2013. 36-43. 被引量:1
  • 9Qazvinian V, Rosengren E, Radev D R, et al. Rumor has it:identifying misinformation in microblogs. In:Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2011. 1589-1599. 被引量:1
  • 10Ratkiewicz J, Conover M, Meiss M, et al. Truthy:mapping the spread of astroturf in microblog streams. In:Proceedings of the 20th International Conference Companion on World Wide Web, Byderabad, 2011. 249-252. 被引量:1

共引文献62

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部