期刊文献+

基于卷积神经网络的谣言检测 被引量:42

Rumor detection based on convolutional neural network
下载PDF
导出
摘要 人工检测谣言通常需要耗费大量的人力物力,并且会有很长的检测延迟。目前现存的谣言检测模型一般根据谣言的内容、用户属性、传播方式人工地构造特征,而人工构建特征存在考虑片面、浪费人力等现象。为了解决这个问题,提出了基于卷积神经网络(CNN)的谣言检测模型。将微博中的谣言事件向量化,通过卷积神经网络隐含层的学习训练来挖掘表示文本深层的特征,避免了特征构建的问题,并能发现那些不容易被人发现的特征,从而产生更好的效果。实验结果表明,所提方法能够准确识别谣言事件,在准确率、精确率与F1值指标上优于支持向量机(SVM)与循环神经网络(RNN)等对比算法。 Manual rumor detection often consumes a lot of manpower and material resources, and there will be a long detection delay. At present, the existing rumor detection models construct features manually according to the content, user attributes, and pattern of the rumor transmission, which can not avoid one-sided consideration, waste of human and other phenomena. To solve this problem, a rumor detection model based on Convolutional Neural Network (CNN) was presented. The rumor events in microhlog were vectorized. The deep features of text were mined through the learning and training in hidden layer of CNN to avoid the problem of feature construction, and those features that were not easily found could be found to produce better results. The experimental results show that the proposed method can accurately identify rumor events, and it is better than Support Vector Machine (SVM), Recurrent Neural Network (RNN) and other contrast algorithms in accuracy rate, precision rate and F1 score.
出处 《计算机应用》 CSCD 北大核心 2017年第11期3053-3056,3100,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61573259 61673301 61573255 61673299) 上海市中医药三年行动计划重点项目(ZY3-CCCX-3-6002) 上海自然科学基金资助项目(15ZR1443800)~~
关键词 微博 谣言检测 谣言事件 卷积神经网络 microblog rumor detection rumor event Convolution Neural Network (CNN)
  • 相关文献

参考文献3

二级参考文献91

  • 1Allport G W, Postman L. The Psychology of Rumor. Oxford:Henry Holt, 1947. 被引量:1
  • 2Kapferer J-N. Rumeurs:le Plus Vieux Média du Monde (in French). Paris:Le Seuil Editions, 1987. 被引量:1
  • 3Peterson W A, Gist N P. Rumor and public opinion. American J Soc, 1951, 57:159-167. 被引量:1
  • 4Budak C, Agrawal D, Abbadi A El. Limiting the spread of misinformation in social networks. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 665-674. 被引量:1
  • 5Castillo C, Mendoza M, Poblete B. Information credibility on twitter. In:Proceedings of the 20th International Conference on World Wide Web, Byderabad, 2011. 675-684. 被引量:1
  • 6Nguyen D T, Nguyen N P, Thai M T. Sources of misinformation in online social networks:who to suspect? In:Proceedings of Military Communications Conference. Orlando:IEEE, 2012. 1-6. 被引量:1
  • 7Okazaki N, Nabeshima K, Watanabe K, et al. Extracting and aggregating false information from microblogs. In:Proceedings of the Workshop on Language Processing and Crisis Information, Nagoya, 2013. 36-43. 被引量:1
  • 8Qazvinian V, Rosengren E, Radev D R, et al. Rumor has it:identifying misinformation in microblogs. In:Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2011. 1589-1599. 被引量:1
  • 9Ratkiewicz J, Conover M, Meiss M, et al. Truthy:mapping the spread of astroturf in microblog streams. In:Proceedings of the 20th International Conference Companion on World Wide Web, Byderabad, 2011. 249-252. 被引量:1
  • 10Liao Q Y, Shi L. She gets a sports car from our donation:rumor transmission in a chinese microblogging community. In:Proceedings of the 2013 Conference on Computer Supported Cooperative Work. San Antonio:ACM, 2013. 587-598. 被引量:1

共引文献643

同被引文献185

引证文献42

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部