期刊文献+

基于CNN-SVR模型对两相复合材料电容值的预测

Prediction of capacitance of two-phase composites based on CNN-SVR model
下载PDF
导出
摘要 电介质复合材料是重要的储能材料,其电容是电容器关键参数之一。传统方法中,实际的电容值是由仪器直接测试得到,给定微观结构的复合材料其电容值可以由泊松方程计算得到。在计算机模拟生成的数据集基础上,采用CNN-SVR模型进行了预测研究,研究结果表明,机器学习方法能够快速有效地预测给定复合材料微观结构的电容值,不仅克服了静态物理特征表达能力的不足,而且摆脱了繁琐的特征设计过程,也避免了复杂的有限元仿真运算。该方法还具有推广和应用于复合材料其他物理特性研究的潜力。 Dielectric composite is an important energy storage material,and its capacitance is one of the key parameters of capacitor.In the traditional method,the actual capacitance value is directly measured by the instrument,and the capacitance value of composite material with given microstructure can be calculated by Poisson equation.Based on the data set generated by computer simulation,the cnn-svr model is used to predict the capacitance value of a given composite microstructure.The results show that the machine learning method can quickly and effectively predict the capacitance value of a given composite microstructure,which not only overcomes the lack of static physical feature expression ability,but also gets rid of the cumbersome feature design process and avoids the complicated finite element simulation.This method also has the potential to be applied to other physical properties of composites.
作者 朱珍 卢天奇 朱文博 陈建文 王金海 黄穗龙 许仁俊 ZHU Zhen;LU Tian-qi;ZHU Wen-bo;CHEN Jian-wen;WANG Jin-hai;HUANG Sui-long;XU Ren-jun(School of Mechatronics Engineering and Automation,Foshan University,Foshan 528225,China)
出处 《佛山科学技术学院学报(自然科学版)》 CAS 2022年第2期36-43,共8页 Journal of Foshan University(Natural Science Edition)
基金 广东省自然科学粤佛联合基金青年项目(2020A1515110601)。
关键词 复合材料 电容 计算机模拟 机器学习 composite materials capacitance computer simulation machine learning
  • 相关文献

参考文献3

二级参考文献15

  • 1王兴玲,李占斌.基于网格搜索的支持向量机核函数参数的确定[J].中国海洋大学学报(自然科学版),2005,35(5):859-862. 被引量:127
  • 2VAPNIK V, LEVIN E, CUN Y L. Measuring the VC-dimension of learning machines[J]. Neural Computation, 1994, 6(5): 851-876. 被引量:1
  • 3CHAPELLE O, VAPNIK V, BOUSQUET O. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1/3): 131-159. 被引量:1
  • 4CHEN P W, WANG J Y, LEE H. Model selection of SVMs using GA approach[C]//Proc of 2004 IEEE Int Joint Conf on Neural Networks. Piscataway, USA, 2004: 2035-2040. 被引量:1
  • 5EBERHART R, KENNEY J. A new optimizer using particle swarm theory[C]//Proc of the sixth International Symposium on Micro Machine and Human Science. Piscataway, USA, 1995: 39-43. 被引量:1
  • 6SU C T, YANG C H. Feature selection for the SVM: an application to hypertension diagnosis[J]. Expert Systems with Application, 2008, 34(1): 754-763. 被引量:1
  • 7KEERTHI S S, LIN C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural Computation, 2003, 15(7): 1667-1689. 被引量:1
  • 8SMOLA A J, SCHOLKOPF B, MULLER K R. The connection between regularization operators and support vector kemels[J] Neural Networks, 1998, 11 (4): 637-649. 被引量:1
  • 9CHANG C C, LIN C J. LIBSVM: a library for support vector machines[DB/OL]. [2011-10~07]. http://www.csie.ntu.edu. tw/-cjlin/libsvm/. 被引量:1
  • 10侯昭胤,戴擎镰,吴肖群,陈甘棠.人工神经元网络辅助丙烷氨氧化催化剂设计[J].催化学报,1997,18(2):152-156. 被引量:15

共引文献300

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部