期刊文献+

基于YOLOv5网络的缺陷硬糖智能分拣系统研究 被引量:7

Study on intelligent sorting system of defective hard candies based on convolutional neural network
下载PDF
导出
摘要 针对糖果生产企业采用人工方法分选缺陷硬糖存在的漏检、成本高、效率低等问题,研究设计一种基于卷积神经网络的缺陷硬糖智能分选系统。通过工业相机采集硬糖图像,利用YOLOv5卷积神经网络模型进行缺陷硬糖的检测识别,使用喷阀剔除缺陷硬糖。测试结果表明,实时检测准确率高达98%,具有高度自动化和智能化水平,在食品生产工业中具有一定的应用和推广价值。 In order to solve the problems of missed inspection,high cost and low efficiency when sorting defective hard candies by workers in candies production enterprises,an intelligent sorting system of defective hard candies was developed based on convolutional neural network.This system uses industrial cameras to collect images of hard candies,uses YOLOv5 network for detection and classification of defective hard candies,and uses a spray valve to reject defective candies.The testing results show that the real-time detection accuracy rate reaches 98%.The proposed sorting system with a high level of automation and intelligence has certain application and promotion value in the food production industry.
作者 朱婷婷 程磊 王锦亚 居荣华 倪超 ZHU Tingting;CHENG Lei;WANG Jinya;JU RongHua;NI Chao(College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China)
出处 《包装与食品机械》 CAS 北大核心 2022年第1期34-39,共6页 Packaging and Food Machinery
基金 国家重点研发计划项目(2017YFF0207200)。
关键词 缺陷检测 硬糖分选 YOLOv5 智能分拣 defect detection hard candy sorting YOLOv5 intelligent sorting
  • 相关文献

参考文献11

二级参考文献62

共引文献295

同被引文献75

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部