期刊文献+

高压输电线路巡线机器人障碍物视觉检测识别研究 被引量:27

Research of Obstacle Recognition Based on Vision for High Voltage Transmission Line Inspection Robot
下载PDF
导出
摘要 障碍物的检测识别与定位是高压输电线路自主巡线机器人中的关键技术之一。针对220kV单分裂输电线路的结构特点,提出了一种基于视觉传感器的障碍物检测识别方法。首先,对采集的图像进行膨胀、腐蚀和高斯平滑等处理,以减少图像噪声;然后,利用Otsu算法对Canny算子进行改良来提取图像边缘,以减少光线变化带来的影响;最后,提取边缘图像中某些图形基元并施加结构约束,实现障碍物的检测识别。大量的试验研究表明,该方法能有效地检测识别高压输电线路的导线、防震锤、悬垂绝缘子和耐张绝缘子等结构物。 Obstacle recognition and orientation is one of the key techniques in high voltage transmission line autonomous inspection robot. In light of the structure of 220 kV single split transmission line, a method of obstacle recognition based upon vision sensor is put forward. First of all, the shot image is processed by expansion, erosion, Gauss smoothing treatment to relieve the noise. And then, Otsu is used to improve Canny algorithm so as to detect the edge of the image, which can reduce the influence of the light changing. At last, some graph ceils are detected and given structure constraint in the edge of image to achieve obstacles recognition. A lot of tests proved that structures such as wire, counterweight, strain clamp and suspension on high voltage transmission line can be effectively recognized using the method.
出处 《传感技术学报》 CAS CSCD 北大核心 2008年第12期2092-2096,共5页 Chinese Journal of Sensors and Actuators
基金 国家高技术研究发展计划(863计划)资助课题(2005AA420110 2006AA04Z202)
关键词 巡线机器人 障碍识别 OTSU算法 CANNY算子 结构约束 inspection robot obstacle recognition otsu algorithm canny algorithm structure constraint
  • 相关文献

参考文献4

二级参考文献16

  • 1张运楚,梁自泽,谭民.架空电力线路巡线机器人的研究综述[J].机器人,2004,26(5):467-473. 被引量:122
  • 2孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993.. 被引量:28
  • 3Canny John, A Computational Approach to Edge Detection[J]. IEEE Transactions on Pattern Analysis and Machine Int, 1986,8(6). 被引量:1
  • 4Haddon J F, Boyce J F. Image Segmentation by Unifying Region and Boundary Information[J]. IEEE Transactions on Pattern Analysis and Machine, 1990,12(10). 被引量:1
  • 5Wang Zhiqian, Baghunath R K, Ben-Arie Jezekiel. Optimal Ramp Edge Detection Using Expansion Matching[J]. IEEE Transactions on Pattern Analysis and Machine, 1996:18(11). 被引量:1
  • 6马颂德 张正友.计算机视觉[M].北京:科学出版社,1998.72-80. 被引量:194
  • 7Peungsungwal S,Pungsiri B, Chamnongthai K, et al. Autonomous robot for a power transmission line inspection [ A ]. The 2001 IEEE International Symposium on Circuits and Systems [ C ].Sydney, NSW Australia :2001. 121 - 124. 被引量:1
  • 8Sawada J, Kusumoto K, Maikawa Y, et al. A mobile robot for inspoction of power transmission lines [ J ]. IEEE Transactions on Power Delivery, 1991,6 ( 1 ) : 309 - 315. 被引量:1
  • 9Sawada J,Kusumoto K,Munakata T.A mobile robot for inspection of power transmission lines[J].IEEE Transactions on Power Delivery,1991,6(1):309-315. 被引量:1
  • 10Peters J F,Ahn T C,Borkowskii M.Obstacle classification by a line-crawling robot:a rough neurocomputing approach[C]//Proceedings of the Third International Conference on Rough Sets and Current Trends in Computing-Lecture Notes in Artificial Intelligence.London,UK:Springer-Verlag,2002:594-601. 被引量:1

共引文献183

同被引文献206

引证文献27

二级引证文献329

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部