期刊文献+

基于空间自适应和混合损失对抗网络的乳腺肿块图像分割方法 被引量:1

Breast mass image segmentation based on spatial adaptive and mixed loss adversarial networks
下载PDF
导出
摘要 在乳腺癌筛查的计算机辅助诊断过程中,乳腺肿块的精确分割至关重要.然而,乳腺肿块在X光成像中与背景灰度接近、形状不规则,使得精确分割面临很大挑战.为进一步提升分割性能,提出一种基于空间自适应和混合损失对抗网络的乳腺肿块分割新方法.首先,提出可分离卷积U-Net模型作为对抗网络中的生成器,以减少参数量和计算量;然后,在判别网络中添加空间自适应归一化层来获取分割掩码中蕴含的语义信息;最后,综合考虑类别不平衡、语义一致性等因素的影响,提出一种融合对抗损失、分割损失和感知损失的混合损失函数以提升模型学习效果.实验结果表明,新方法在INbreast和CBIS-DDSM两个乳腺分割公开数据集中分别取得99.35%和99.72%的准确率,以及81.27%和82.01%的集合相似度,获得优于现有方法的分割性能. Accurate segmentation of breast masses is of great importance in the process of computer aided diagnosis for breast cancer screening.However,the image gray of breast mass in X-ray imaging is close to the background and its shape is also irregular,which makes a great challenge to achieve accurate segmentation.In order to further improve the segmentation performance,a novel breast mass segmentation method based on spatial adaptive and mixed loss adversarial network is proposed.Firstly,a separable convolutional U-Net model is proposed as a generator in adversarial network to reduce the computational cost of parameters and time complexity.Secondly,the spatial adaptive normalization layer is added to the discriminator to obtain the semantic information contained in the segmentation mask.Finally,considering the influence of category imbalance,semantic consistency and other factors,a mixed loss function is proposed to integrate the admissive loss,segmentation loss and perception loss,so as to improve model learning effect.Rigorous experimental on INbreast and CBIS-DDSM breast image datasets show that the proposed method has achieved accuracy of 99.35%and99.72%,dice of 81.27%and 82.01%,respectively.The experimental results demonstrate that the segmentation performance of the proposed model outperforms the existing methods.
作者 刘东 陈境宇 王生生 LIU Dong;CHEN Jing-yu;WANG Sheng-sheng(Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province,Xiangnan University,Chenzhou 423300,Hunan,China;School of Computer and Artificial Intelligence,Xiangnan University,Chenzhou 423300,Hunan,China;Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education,Jilin University,Changchun 130012,Jilin,China;School of Computer Science and Technology,Jilin University,Changchun 130012,Jilin,China)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期271-280,共10页 Journal of Yunnan University(Natural Sciences Edition)
基金 湖南省教育厅优秀青年基金(18B504) 郴州市科技局计划(zdyf201906)。
关键词 乳腺肿块分割 U-Net模型 深度学习 生成对抗网络 医学辅助诊断 breast mass segmentation U-Net model deep learning generative adversarial networks computer-aided medical diagnosis
  • 相关文献

参考文献2

二级参考文献23

共引文献2

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部