期刊文献+

融合边缘检测模块的自然地貌语义分割模型研究 被引量:1

Research on Semantic Segmentation of Natural Landform Based on Edge Detection Module
下载PDF
导出
摘要 针对遥感图像自然地貌边缘的像素点归类问题,提出融合边缘检测模块的多通道融合模型与解码器端模块模型。边缘检测模块以Canny算子为基础进行闭运算及均值滤波处理得到精确化的图像边缘。语义分割网络以DeepLabV3+为基础,分别从编码器及解码器端并联边缘计策模块。实验结果表明,改进后的2种网络相比原DeepLabV3+网络在高分辨率自然地貌图像数据集上均取得更好的分割效果,且解码器端融合网络取得了最高72.60%的交互比(IoU,intersection over union)和86.64%的F1score,可用于面向自然地貌的识别与分割。 To classify pixels of natural landform edges in remote sensing images, this paper proposes a multi-channel fusion model and a decoder-side module model both integrating an edge detection module.The edge detection module takes the Canny operator as the base to perform closed operations and mean filtering, as a result of which accurate image edges can be achieved. Based on DeepLabV3+, the semantic segmentation network is connected with an edge planning module in parallel at encoder and decoder sides respectively. The experimental results show that the two improved networks can achieve a better segmentation effect on a high-resolution natural landform image data set compared with the original DeepLabV3+ network. Particularly, the network with fusion at the decoder side achieves the highest intersection over union(IoU) of 72.60% and F1 score of 86.64%, which can be used for the recognition and segmentation of natural landforms.
作者 沈祺宗 高春艳 Shen Qizong;Gao Chunyan(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2022年第2期293-302,共10页 Journal of System Simulation
基金 国家自然科学基金重点项目(U1913211)。
关键词 语义分割 deeplabv3+ 边缘检测 自然地貌 semantic segmentation deeplabv3+ edge detection natural landform
  • 相关文献

参考文献2

共引文献16

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部