摘要
近几年,拓扑光子晶体凭借独特的传播性能受到研究人员的广泛关注,随着理论模型的逐步成熟,拓扑光子学领域出现了一些新型应用。利用拓扑光子晶体形成的边缘态,设计具有单向传导能力、光路增强效应的光电子器件,这些器件会具有对局域缺陷的免疫、高传输效率等性质,在芯片开发、生物传感、军事通信等领域具有很广泛的应用前景。以在不同维度上拓扑光子晶体形成边缘的理论模型为基础,对目前已开发的光学器件,如拓扑激光器、光波导、单向传导器件、光调制器等,进行了分类总结与分析,展现出拓扑光子晶体在结构设计和材料选取上的巨大潜能。最后在明确目前拓扑光子晶体研究进展的基础上,对拓扑光子学器件在设计过程中存在的缺陷、优化方向进行评估与展望。
In recent years,topological photonic crystals have attracted growing interest for their unique propagation characteristics.With the development of theoretical models in topological photonics,numerous novel applications have emerged.Topological edge states formed by topological photonic crystals can realize optical enhancement and unidirectional transmission in optoelectronic devices.Such optoelectronic devices can have distinct characteristics such as immunity to local defects and high transmission efficiency,offering enormous potential benefits to chip development,biosensor,military communication,and other applications.This study summarizes and analyzes a range of optical devices based on theoretical models of edge states formed by topological photonics in different dimensions:topological lasers,optical waveguides,unidirectional conduction devices,and optical modulators.The presented examples demonstrate the huge potential of topological photonic crystals in structural design and material selection.Finally,the current research progress of topological photonic crystals is clarified and the defects and optimization direction of topological photonic devices in the design process are evaluated and prospected.
作者
刘超
郭小伟
李绍荣
高原
Liu Chao;Guo Xiaowei;Li Shaorong;Gao Yuan(School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu,Sichuan 610054,China;Yangtze Delta Region Institute,University of Electronic Science and Technology of China,Huzhou,Zhejiang 313001,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2022年第1期1-15,共15页
Laser & Optoelectronics Progress
基金
国家重点研发计划(2018YFB0407403)
中国科学院科技服务网络计划区域重点项目(KFJ-STS-QYZD-2021-10-002)。
关键词
光学器件
光子晶体
拓扑光子学
边缘态
optical devices
photonic crystal
topological photonics
edge state