摘要
飞行高度1000 m、飞行速度200 km/h的机载激光雷达(LiDAR)在测量海域的海底地形时,需要控制LiDAR中的二维振镜扫描系统,使激光脚点达到探测幅宽350 m以上、扫描网格点密度在1 spots/m^(2)以上的圆锥扫描轨迹。根据二维振镜结构的特性,本文通过改进的Bresenham算法生成控制系统中步进电动机的触发信号,并对由二维振镜系统导致的光束横向偏移误差进行补偿,使扫描角误差降低至0.24 mrad以下。通过仿真实验验证了Bresenham算法可使机载LiDAR的二维振镜扫描系统达到水面激光脚点密度1~5.59 spots/m^(2)和扫描角10°~60°的圆锥扫描,进一步证明了由算法导出的触发信号有效性。
To control the two-dimensional galvanometer scanning system in light detection and ranging(LiDAR),the laser foot points can reach the detection width of 350 m or more,scanning grid point density in 1 spots/m^(2) or more high pointing accuracy cone scan at a flight altitude of 1000 m and a flight speed of 200 km/h airborne LiDAR to sea bottom topography mapping.According to the characteristics of the two-dimensional galvanometer structure,this study uses the improved Bresenham algorithm to generate the trigger signal of the stepping motor in the control system and compensates for the beam lateral offset error caused by the two-dimensional galvanometer system,reducing the scan angle error to < 0.24 mrad.Simulation experiments demonstrate that the algorithm can cause the airborne LiDAR’s two-dimensional galvanometer scanning system to achieve the conical scanning on the water surface with a laser foot point density of 1-5.59 spots/m^(2) and scanning angle of 10°-60°,and the trigger signal derived by the algorithm is validated through experiments.
作者
周国清
林港超
周祥
谭逸之
李伟豪
李先行
邓荣华
Zhou Gouqing;Lin Gangchao;Zhou Xiang;Tan Yizhi;Li Weihao;Li Xianxing;Deng Ronghua(College of Mechanical and Control Engineering,Guilin University of Technology,Guilin,Guangxi 541006,China;Guangxi Key Laboratory of Spatial Information and Geomatics,Guilin University of Technology,Guilin,Guangxi 541004,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2021年第23期105-112,共8页
Laser & Optoelectronics Progress
基金
国家自然科学基金(41431179,41961065)
广西创新驱动发展专项(AA18118038,AA18242048)。