期刊文献+

基于Jarque-Bera检验的非线性多分布过程故障检测 被引量:1

Jarque-Bera Test-based Fault Detection for Nonlinear Multi-distribution Process
下载PDF
导出
摘要 针对现代工业过程的非线性和多分布问题,提出一种基于Jarque-Bera test的故障检测方法。首先,对标准化后的原始数据进行Jarque-Bera test,将变量划分为两个部分;其次,对所有的JB统计量做-ln处理,并采用正态置信概率权值进一步划分,从而使原始变量空间划分为正态和非正态分布的两个子空间;再次,在两个子空间分别基于KPCA和kNN算法提取过程的非线性特征,建立故障检测模型;最后,通过数值案例和TE过程仿真实验验证了所提方法的有效性。 In view of the nonlinear and multi-distribution in modern industrial processes,a fault detection method based on JB test(Jarque-Bera test,J-B test)was proposed.Firstly,having J-B test carried out on the original data after standardization and the variables divided into two parts;and then,having all JB statistics processed by-ln and the weights of normal confidence probability used to further divide the original variable space into two subspaces of normal and non-normal distribution,and having the nonlinear features of the process extracted based on KPCA and kNN algorithm respectively in two subspaces to establish a fault detection model;and finally,having the effectiveness of the proposed method verified by numerical examples and the simulation experiments of Tennessee Eastman(TE)process.
作者 郭小萍 俞巷天 李元 GUO Xiao-ping;YU Xiang-tian;LI Yuan(College of Information Engineering,Shenyang University of Chemical Technology)
出处 《化工自动化及仪表》 CAS 2022年第2期165-174,共10页 Control and Instruments in Chemical Industry
基金 国家自然科学基金项目(61490701,61673279) 辽宁省教育厅科学研究项目(LJ2020021)。
关键词 Jarque-Bera检验 故障检测 多分布过程 非线性 核主元分析 K近邻 Jarque-Bera test fault detection multi-distributed process nonlinearity kernel principal component analysis k-nearest neighbor
  • 相关文献

参考文献3

二级参考文献40

  • 1李荣雨,荣冈.Fault Isolation by Partial Dynamic Principal Component Analysis in Dynamic Process[J].Chinese Journal of Chemical Engineering,2006,14(4):486-493. 被引量:18
  • 2NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J]. American Institute of Chemical Engineers Journal, 1994,40(8): 1361-1375. 被引量:1
  • 3KRESTA J, MACGREGOR J F, MARLIN T E. Multivariate statistical monitoring of process operating performance[J]. Canadian Journal of Chemical Engineering, 1991,69(1): 35 -47. 被引量:1
  • 4WISE B M, RICKER N L. Recent advances in multivariate statistical process control: improving robustness and sensitivity[C]I/Proceedings of the lFAC Intemational Symposium, ADCHEM' 91. Toulouse, France: Pergamon Press, 1991: 125 -130. 被引量:1
  • 5MACGREGOR J F, JAECKLE C, KIPARISSIDES C, et al. Process monitoring and diagnosis by multiblock PLS methods[J]. AlChE Journal, 1994, 40(5): 826 - 838. 被引量:1
  • 6NOMIKOS P, MACGREGOR J F. Monitoring batch process using multiway principal component analysis[J]. AlChE Journal, 1994, 40(8): 1361 - 1375. 被引量:1
  • 7KRUGER U, DIMITRIADIS G. Diagnosis of process faults in chemical systems using a local partial least squares approach[J]. AIChE Journal, 2008, 54(10): 2581 - 2596. 被引量:1
  • 8QIN S J. Statistical process monitoring: basics and beyond[J]. Journal of Chemometrics, 2003, 17(8/9): 480 - 502. 被引量:1
  • 9ZHANG Y W, QIN S J. Improved nonlinear fault detection technique and statistical analysis[J]. AlChE Journal, 2008, 54(12): 3207- 3220. 被引量:1
  • 10ZHANG Y W, ZHOU H, QIN S J, et al. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares[J].IEEE Transactions on Industrial Informatics, 2010,6(1): 3-10. 被引量:1

共引文献26

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部