期刊文献+

滞后型测度泛函微分方程的Φ-有界变差解

Bounded Φ-Variation Solutions for Retarded Measure Functional Differential Equations
下载PDF
导出
摘要 利用Kurzweil积分和Φ-有界变差函数理论,建立了滞后型测度泛函微分方程的Φ有界变差解的存在性定理. The existence theorem of boundedΦ-variation solution to retarded measure functional differential equations is established by using Kurzweil integral and the function of boundedΦ-variation.
作者 李宝麟 丁利波 LI Baolin;DING Libo(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
出处 《吉首大学学报(自然科学版)》 CAS 2021年第5期1-7,共7页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(11761063)。
关键词 滞后型测度泛函微分方程 Φ-有界变差解 Kurzweil积分 retarded measure functional differential equations boundedΦ-variation solution Kurzweil integral
  • 相关文献

参考文献3

二级参考文献29

  • 1吴从炘,李宝麟.不连续系统的有界变差解[J].数学研究,1998,31(4):417-427. 被引量:33
  • 2Kurzweil J., Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J., 1957, 7: 418-449. 被引量:1
  • 3Kurzweil J., Vorel Z., Continuous dependence of solutions of differential equations on a parameter, Czechoslovak Math. J., 1957, 23: 568-583. 被引量:1
  • 4Kurzweil J., Generalized ordinary differential equations, Czechoslovak Math. J., 1958, 8: 360-389. 被引量:1
  • 5Gicbrnan I. I., On the reigns of a theorem of N. N. Bogoljubov, Ukr. Mat. Zurnal, 1952, IV: 215--219 (in Russian). 被引量:1
  • 6Krasnoelskj M. A., Krein S. G, On the averaging principle in nonlinear mechanics, Uspehi Mat. Nauk, 1955,3:147-152 (in Russian). 被引量:1
  • 7Schwabik S.: Generalized ordinary differential equations, Singapore: World Scientific, 1992. 被引量:1
  • 8Chew T. S., On kurzwell generalized ordinary differential equations, J. Differential Equations, 1988, 76:286-293. 被引量:1
  • 9Schwabik S., Generalized volterra integral euuations, Czechoslovak, Math. J., 1982, 82: 245-270. 被引量:1
  • 10Artstein Z., Topological dynamics of ordinary differential equations and Kurzweil equations, Differential Equations, 1977, 28: 224-243. 被引量:1

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部