期刊文献+

一类非自治微分方程解对初值和参数的连续依赖性

Continuous dependence of the solutions on initial condition and parameter for a nonautonomous differential equation
下载PDF
导出
摘要 利用Kurzweil-Henstock积分,建立了形如x′(t)=f(x,t)+h(t)型方程解的存在唯一性定理以及解对初值及参数的连续依赖性定理. The existence,uniqueness and continuous dependence of solutions on initial conditions and parameter are established by using the Kurzweil-Henstock integral for the local dynamics system of the equation x′(t)=f(x,t)+h(t).
出处 《西北师范大学学报(自然科学版)》 CAS 2004年第4期8-11,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10271095) 甘肃省教育厅科研资助项目(021-20) 西北师范大学科技创新工程资助项目(NWNU-KJCXGC-212)
关键词 Kurzweil—Henstock积分 存在唯一性 连续依赖性 Kurzweil-Henstock integral existence and uniqueness continuous dependence
  • 相关文献

参考文献9

二级参考文献34

  • 1[1]Artstein Z.Topological dynamics of an ordinary differential equation[J].J Diff Equations,1977,23:216-223. 被引量:1
  • 2[2]Artstein Z.Topological dynamics of an ordinary differential equation and Kurzweil equations[J].J Diff Equations,1977,23:224-243. 被引量:1
  • 3[3]Artstein Z.The limiting equations of nonautonomous ordinary differential equation[J].J Diff Equations,1977,25:124-202. 被引量:1
  • 4[4]Kurzweil J.Generalized ordinary differential equations[J].J Czech Math,1957,82(7):418-449. 被引量:1
  • 5[5]Henstock R.Lecture on the Theory of Integration[M].Singapore:World Scientific,1988. 被引量:1
  • 6[6]Schwabik S.Generalized Ordinary Differential Equations[M].Singapore:World Scientific,1992. 被引量:1
  • 7[7]Wu Congxin,Li Baolin,Lee E S.Discontinuous systems and Henstock-Kurzweil integrals[J].J Math Anal Appl,1999,229(1):119-139. 被引量:1
  • 8Kurzweil J., Generalized ordinary differential equations and continuous dependence on a parameter, Czechoslovak Math. J., 1957, 7: 418-449. 被引量:1
  • 9Kurzweil J., Vorel Z., Continuous dependence of solutions of differential equations on a parameter, Czechoslovak Math. J., 1957, 23: 568-583. 被引量:1
  • 10Kurzweil J., Generalized ordinary differential equations, Czechoslovak Math. J., 1958, 8: 360-389. 被引量:1

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部