摘要
J型管作为新型电力系统中新能源海上风电送出系统海底电缆的保护装置,其存在会阻碍海缆对外散热,制约整条风电送出线路的载流量。为了提高J型管段海缆载流量,文中建立了典型J型管段流体—温度耦合数值模型,仿真分析了环境风速、太阳辐射、环境温度对直流±250 kV海底电缆封闭J型管系统温度场的影响规律,确定J型管载流量瓶颈位置,提出了一种J型管外壁开孔配合平台开孔引入外界风的J型管载流量提升方法,验证了仿真模型与算法的正确性。结果表明与全封闭J型管系统相比,J型管外壁开孔配合平台开孔能有效降低海缆温度,环境风速较低为1 m/s时载流量可有效提升13.98%。研究结果为指导J型管设计提升J型管段海缆载流量提供了新的解决方案。
As the protection device of submarine cable of new energy offshore wind power transmission system in new power system,J-tube has such problem as hinders the external heat dissipation of cable and restricts the carrying capacity of the whole wind power transmission line.For improving the carrying capacity of J-tube section of cable,a fluid-temperature coupling numerical model of typical J-tube section is set up in this paper.The influence of environmental wind speed,solar radiation and ambient temperature on temperature field of closed J-tube system of DC±250 kV submarine cable is simulated and analyzed,and the bottleneck position of J-tube carrying capacity is determined.A kind of method of J-tube carrying capacity improvement is proposed,in which the opening of J-tube wall is combined with the opening of platform to introduce external air and the correctness of the simulation model and algorithm is verified.The results show that,compared to a fully enclosed J-tube system,the opening on the outer wall of J-tube combined with the opening on the platform can effectively reduce temperature of the cable and,in case the ambient wind speed is low to 1 m/s,the carrying capacity can effectively increase 13.98%.The research results provide a new solution for guiding the design of J-tube and improving the carrying capacity of cable of J-tube section.
作者
崔戎舰
肖湃
吴高波
李健
杜志叶
郝兆扬
CUI Rongjian;XIAO Pai;WU Gaobo;LI Jian;DU Zhiye;HAO Zhaoyang(Central Southern China Electric Power Design Institute,Wuhan University,Wuhan 430071,China;School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China)
出处
《高压电器》
CAS
CSCD
北大核心
2022年第1期61-69,共9页
High Voltage Apparatus
关键词
海底电缆
J型管
温度场
载流量
submarine cable
J-tube
temperature field
current-carrying capacity