期刊文献+

数字人文视角下的领域知识图谱自动问答研究 被引量:5

Research on Automatic Question Answering of Domain Knowledge Graph from the Perspective of Digital Humanities
下载PDF
导出
摘要 [目的/意义]从数字人文视角下构建古汉语典籍领域的知识图谱自动问答系统,促进中华传统文化发展与创新。[方法/过程]文章以《左传》为具体研究对象,在此基础上使用支持向量机(SVM)算法实现问句的意图识别,基于BERT-LSTM-CRF的深度学习算法实现问句的实体识别功能,再通过构造Cpyher查询表达式在Neo4j数据库中检索并返回结果;前端则基于Flask框架搭建展示平台供用户使用,最终实现问答系统的搭建。[结果/结论]该问答系统可以实现古文领域问题的智能检索,具有应用价值。 [Purpose/significance]Construct an automatic question-and-answer system of knowledge graphs in the field of ancient Chinese classics from the perspective of digital humanities to promote the development and innovation of traditional Chinese culture.[Method/process]Taking"Zuo Zhuan"as the specific research object,on this basis,support vector machine(SVM)algorithm is used to realize the intention recognition of question sentences,and the deep learning algorithm based on BERT-LSTM-CRF realizes the entity recognition function of question sentences.Then cpyher query expression is constructed to retrieve and return the results in Neo4j database;the front page builds a display platform based on Flask framework for users to use,and finally realizes the construction of question and answer system.[Result/conclusion]The question answering system can realize intelligent retrieval of questions in the field of ancient Chinese and has application value.
作者 刘欢 刘浏 王东波 LIU Huan;LIU Liu;WANG Dongbo(College of Information Management,Nanjing Agricultural University,Nanjing 210095)
出处 《科技情报研究》 2022年第1期46-59,共14页 Scientific Information Research
关键词 数字人文 古汉语典籍 知识图谱 SVM算法 BERT-LSTM-CRF digital humanities ancient Chinese classics knowledge graph SVM algorithm BERT-LSTM-CRF
  • 相关文献

参考文献15

二级参考文献163

共引文献414

同被引文献144

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部