期刊文献+

具有联合收获和时滞以及Allee效应影响的Lotka-Volterra竞争模型

A Lotka-Volterra competition model with combined harvest,time delay and Allee effect
下载PDF
导出
摘要 考虑一个具有联合收获和时滞的Lotka-Volterra竞争模型,其中一个物种受Allee效应影响,分析了该模型平衡点的局部以及全局稳定性.结果表明,依据不同的参数区域,两物种共存或出现竞争排斥,可通过调整模型的初始值或捕获努力量,使模型的解到达期望的状态,对于生物入侵防控及培育珍稀物种具有指导意义.讨论了当两时滞不同时为0时,模型出现分支的情形.模型存在一个临界时滞值,当时滞小于临界时滞值时,共存平衡点是局部渐近稳定的;当时滞等于临界时滞值时,Hopf分支出现.采用数值模拟说明了分析和结论 . A Lotka-Volterra competition model was considered, in which both species had harvesting and were effected by time delay, and one species was subjected to Allee effect. The local and global stability of the equilibrium point of the model was analyzed. The results of the study showed that, according to different parameter areas, the two species either coexisted or competitively excluded each other. The solution of the model could reach the desired state by adjusting the initial value or the harvesting effort.This has a certain guiding significance for preventing and controlling biological invasion and breeding rare species. The research also discusses the bifurcation situation of the model when the two time delays were not equal to 0 at the same time. There existed a critical value of time delay, such that the equilibrium point was locally asymptotically stable when the delay was smaller than the critical value, and a Hopf bifurcation appeared when the delay was equal to the critical value. The numerical method was also used to verify the results of our analysis.
作者 邹温泉 李维德 ZOU Wen-quan;LI Wei-de(Center of Data Science,School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China)
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第6期798-810,共13页 Journal of Lanzhou University(Natural Sciences)
基金 国家重点研发计划项目(2018YFC0406606)。
关键词 竞争模型 ALLEE效应 稳定性 时滞 HOPF分支 competition model Allee effect stability time delay Hopf bifurcation
  • 相关文献

参考文献2

二级参考文献11

  • 1Ahmad S.Extinction of species in nonautonomous Lotka-Volterra systems Proc[J].Amer Math Soc,1999,127:2905-2910. 被引量:1
  • 2Teng Z,Chen L.Uniform persistence and existence of strictly positive solutions in nonautonomous Lotka Volterra competitive systems with delays[J].Computers Math Applic,1999,37:61-71. 被引量:1
  • 3Teng Z,Li Z.Permanence and asymptotic behavior of the N-species nonautonomous Lotka-Volterra competitive systems[J].Computers Math Appl,2000,39:107-116. 被引量:1
  • 4Teng Z,Yu Y.Some new results of nonautonomous Lotka-Volterra competitive system with delays[J].J Math Anal Appl,2000,241:254-275. 被引量:1
  • 5Teng Z Permanence and sability in nonautonomous logistic systems withinfinite delay[J].Dynamical Sys tems,2002,17:187-202. 被引量:1
  • 6Teng Z.On the parmanence and extinction in nonautonomous Lotka-Volterra competitive systems with delays[J].Acta Math.Sinica,2001,44:293-306. 被引量:1
  • 7Hofbaucr J,Sigmund K.The Theory of Evolution and Dynamical Systems [M].Cambridge :Cambridge U niv Press,1988. 被引量:1
  • 8Montes F de Oca,Zeeman M L.Balancing survival and extinction in nonautonomous competitive Lotka Volterra systems[J].J Math Anal Appl,1995,192:360-370. 被引量:1
  • 9Montes de Oca F,Zeem an M L.Extinction in nonautonomous competitive Lotka-Volterra systems[J].Proc Amer Math Soci,1996,124:3677-3687. 被引量:1
  • 10Ahmad S,Montes de Oca F.Extinction in nonautonomous T-peridic competitive Lotka-Volterra system [J].Appl Math Comput,1998,90:155-166. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部