期刊文献+

扩散Beddington-DeAngelis捕食食饵模型的行波解

Traveling wave solutions of diffusive Beddington-DeAngelis predator-prey models
下载PDF
导出
摘要 主要研究捕食者和食饵皆具有一般密度制约的扩散BeddingtonDeAngelis捕食-食饵模型的行波解.通过构造行波系统的Wazewski集和Lyaponov函数,应用拓扑打靶法的方法建立系统连结边界平衡点到共存平衡点的轨道,进而证明原扩散系统连结边界平衡点到共存平衡点的非负行波解的存在性. In this paper,traveling wave solutions of the diffusive Beddington-DeAngelis predatorprey models with the general density restricts are considered.By constructing the Wazewski set of the traveling wave systems and using the methods of topological shooting,the authors established the existence of traveling wave solutions for the connecting a boundary equilibrium point to the coexistence equilibrium point for the original models,with the help of constructed Lyaponov function.
作者 刘欣然 肖海滨 Liu Xinran;Xiao Haibin(School of Mathematics and Statistics,Ningbo University,Ningbo 315211,China)
出处 《纯粹数学与应用数学》 2021年第3期306-317,共12页 Pure and Applied Mathematics
基金 浙江省自然科学基金(Y17A010023,Y14A010004).
关键词 行波解 最小波速 密度制约 Wazewski集 Lyaponov函数 traveling wave solutions minimum wave speed density restriction Wazewski set Lyaponov function
  • 相关文献

参考文献2

二级参考文献7

  • 1Dunbar S. Traveling wave solutions of diffusive predator-prey equation:periodic orbits and point-to periodic hertoclinic orbits [J]. SIAM J Appl Math, 1986(46): 1 057-78. 被引量:1
  • 2Dunbar S. Traveling wave solutions of diffusive Lotka-Voterra equations[J]. J Math Biol, 1983(17): 11-32. 被引量:1
  • 3Gardner R. Existence of traveling wave solution of predator-prey systems via the connection index[J]. SIAM J Appl Math, 1984(44) :56-79. 被引量:1
  • 4Huang J, Lu G,Ruan S. Existence of traveling wave solutions in a diffusive predator-prey model[J]. J Math Biol, 2003,46: 132-52. 被引量:1
  • 5Hartman P. Ordinary differential equations[J]. New York : Wiley, 1973. 被引量:1
  • 6LaSalle JP. Stability theory for ordinary differential equations[J]. J Diff Eqns, 1968(4) :57-65. 被引量:1
  • 7Wan Tongli,Shi Liangwu. Traveling waves in a diffusive predator-prey model with holling type-Ⅲ functional response[J]. Chaos,Sohions and Fractals,2008(37) :476-486. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部