期刊文献+

P2构型PHEV模型预测能量管理策略研究 被引量:1

Research on the model prediction energy management strategy for P2 configuration PHEV
下载PDF
导出
摘要 基于规则的插电式混合动力系统能量管理策略难以实现全局最优,全局优化策略则存在未来功率需求难以获取及无法实时求解等问题。预测能量管理策略通过对未来一段时间内车辆功率需求进行预测,进而在预测时段内采用全局优化算法,从而在保证算法实时性的同时取得接近全局优化的控制效果。车速预测算法是预测能量管理策略的核心和关键,采用适应能力强、计算速度快的径向基神经网络对车辆功率需求进行预测,以提高车速预测的准确性。以P2构型插电式混合动力系统为研究对象,将模型预测控制与动态规划结合,以发动机油耗最小为优化目标对车速预测时域内最优发动机转矩序列进行求解。建立系统仿真模型,对基于规则的能量管理策略和预测能量管理策略进行对比。结果表明:与基于规则的策略相比,在8个NEDC工况下,基于径向基神经网络的预测能量管理策略能耗降低13.8%。 The rule-based energy management strategy for plug in hybrid electric vehicle(PHEV)is difficult to achieve global optimization,while the global optimization strategy has problems such as difficulty in obtaining future power requirements and solving them in real time.The predictive energy management strategy predicts the vehicle power demand in a period of time in the future,and then uses the global optimization algorithm in the prediction period,so as to ensure the real-time performance of the algorithm and achieve the control effect close to the global optimization.Velocity prediction algorithm is the core and key of energy management strategy.In this paper,radial basis function neural network with strong adaptability and fast calculation velocity is used to predict vehicle power demand and improve the accuracy of vehicle velocity prediction.Taking P2 plug-in hybrid electric system as the research object,model predictive control and dynamic programming(DP)are combined to solve the optimal engine torque sequence in the time domain of vehicle prediction with the minimum engine fuel consumption as the optimization objective.The system simulation model is established to compare the rule-based energy management strategy with the predictive energy management strategy.The results show that compared with the rule-based strategy,the energy consumption of the predictive energy management strategy based on radial basis function neural network is reduced by 13.8%under 8 NEDC conditions.
作者 罗勇 赵爽 庞维 黄欢 LUO Yong;ZHAO Shuang;PANG Wei;HUANG Huan(Key Laboratory of Advanced Manufacturing Technology of Automobile Parts,Ministry of Education,Chongqing University of Technology,Chongqing 400054,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第1期12-19,共8页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金项目(51305475) 重庆市教委科学技术研究项目(KJQN201801143) 重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0308) 重庆理工大学车辆学院科研支撑项目(CL2019-16)。
关键词 PHEV 预测控制 车速预测 径向基神经网络 动态规划 plug-in hybrid electric vehicle predictive control velocity prediction radial basis function dynamic programming
  • 相关文献

参考文献13

二级参考文献57

  • 1杜玖玉,王贺武,黄海燕.基于规则的混联式混合动力系统控制策略[J].农业工程学报,2012,28(S1):152-157. 被引量:16
  • 2杜爱民,冯旭云.四轮驱动混合动力汽车能量管理策略仿真[J].同济大学学报(自然科学版),2006,34(6):800-803. 被引量:3
  • 3张嘉君,吴志新,乔维高.混合动力汽车整车控制策略研究[J].客车技术与研究,2007,29(4):8-11. 被引量:15
  • 4吴剑,张承慧,崔纳新.基于粒子群优化的并联式混合动力汽车模糊能量管理策略研究[J].控制与决策,2008,23(1):46-50. 被引量:30
  • 5HE X L, HODGSON J W. Modeling and simulation for hybrid electric vehicles-Part I :Modeling[ J ]. IEEE Trans- actions On Intelligent Transportation Systems, 2002, 3(4) :235 -243. 被引量:1
  • 6PAGANELLI G, GUERRA T M, DELPRAT S, et al. Sim- ulation and assessment of power control strategies for a parallel hybrid car [ J ]. Proceedings of the Institution of Mechanical Engineers,Part D: Journal of Automobile En- gineering,2000,214(7) :705 -717. 被引量:1
  • 7WIPKE K B, CUDDY M R, BURCH S D. A User-friendly Advanced Power Train Simulation Using a Combined Backward[ J ]. Forward Approach Vehicular Technology, 1999,48(6) :1751 - 1761. 被引量:1
  • 8BRADLEY T H, FRANK A A. Design, Demonstra- tions and Sustainability Impact Assessments for Plug- in Hybrid Electric Vehicles[J]. Renewable and Sus- tainable Energy Reviews,2009,13(1) : 115-128. 被引量:1
  • 9CORDOBA-ARENAS A, ONORI S, GUEZENNEC Y,et al. Capacity and Power Fade Cycle-life Model for Ptug-in Hybrid Electric Vehicle Lithium-ion Bat- tery Cells Containing Blended Spinel and Layered-ox- ide Positive Electrodes[J]. Power Sources, 2015,278 : 473-483. 被引量:1
  • 10WIRASINGHA S G, EMADI A. Classification and Review of Control Strategies for Plug-in Hybrid Elec- tric Vehicles [J]. IEEE Transactions on Vehicular Technology, 2011,60(1) : 111-122. 被引量:1

共引文献91

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部