期刊文献+

高速列车车端关系综合试验台试验研究 被引量:3

Experimental study on the comprehensive test bench of high-speed train cabinet-end relationship
下载PDF
导出
摘要 为了验证基于Stewart并联机器人的车端关系综合试验台能否满足车端关系试验的要求,进行静态定位精度、最大运动范围、运动学正解、动态跟踪特性和最大输出速度试验.结果表明,试验台最大平移运动定位误差0.1 mm,最大旋转运动定位误差0.1°,远优于车端关系试验实际需求,Stewart并联机器人运动学正解精确,可用于系统状态实时监控;动态跟踪特性中,最大幅值衰减和相位滞后均发生在Y向,分别为0.755 dB和25.92°,明显优于幅值衰减3 dB和相位滞后小于90°的要求;三向平移运动最大输出速度均能够达到0.2 m/s的要求.表明车端关系综合试验台完全能够满足高速列车车端关系试验的要求,并且具备进一步提升性能的空间. To verify whether the comprehensive test bench of cabinet-end relationship for high-speed train can meet the demand or not, the positioning precision, maximum motion range, forward kinematics, dynamic tracking performance and maximum output speed tests were carried out. The results indicate that the maximum positioning error of translational motion is 0. 1 mm and the maximum positioning error of rotation motion is 0. 1 °, far superior to the actual demand. The forward kinematics of the Stewart parallel manipulator is precise enough and ean be used for monitoring the real-time state of the system. In the dynamic tracking test, the maximum aptitude attenuation and the maximum phase lag occur in the Ydirection, 0. 755 dB and 25.92°, respectively, significantly better than the amplitude attenuation 3 dB and phase lag 90°. The maximum output speed of three translational motion can meet the 0. 2 m/s requirement. The results show that cabinet-end relationship comprehensive test bench can fully meet the demand of the high-speed train cabinet-end relationship test and has space for further improving performance.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第11期51-54,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(51105094) 机器人技术与系统国家重点实验室资助项目(SKLRS200803B)
关键词 高速列车 车端关系试验 STEWART并联机器人 运动学正解 定位精度 动态跟踪 试验研究 high-speed train cabinet-end relationship test Stewart parallel manipulator forward kinematics positioning accuracy dynamic tracking experimental study
  • 相关文献

参考文献12

  • 1GOSSELIN C. Determination of the workspace of 6-DOF parallel manipulators [ J ]. Journal of Mechanical De- sign, 1990, 12(3):331-336. 被引量:1
  • 2HARIB K, SRINIVASAN K. Kinematic and dynamic analysis of Stewart platform-based machine tool structures [J]. Robotica, 2003, 21:541 -554. 被引量:1
  • 3IDER K S, KORKMAZ O. Trajectory tracking control of parallel robots in the presence of joint drive flexibility[ J ]. Journal of Sound and Vibration, 2009, 319:77-90. 被引量:1
  • 4STEWART D. A platform with 6 degrees of freedom [J]. Aircraft Engineering, 1966, 38(1) :30 -35. 被引量:1
  • 5KOEKEBAKKER S H. Model-based control of a flight simulator motion system [ D ]. Netherlands : Delft University of Technology, 2001 : 12 - 29. 被引量:1
  • 6PARIKH P J, LAM S S Y. A hybrid strategy to solve the forward kinematics problem in parallel manipulators [ J ]. IEEE Transactions on Robotics, 2005, 21(1) : 18 -25. 被引量:1
  • 7ZHANG Wanzhou. The manned spacecraft docking mechanism of Soviet[J]. Aerospace China, 1994, 10:17 -20. 被引量:1
  • 8延皓..基于液压六自由度平台的空间对接半物理仿真系统研究[D].哈尔滨工业大学,2007:
  • 9TING Y, CHEN Y S, JAR H C. Modeling and control for a Gough-Stewart platform CNC machine[ J]. Journal of Robotic Systems, 2004, 21 ( 11 ) : 609 -623. 被引量:1
  • 10YAO Rui. Dimensional optimization design of the fourcable-driven parallel manipulator in FAST [ J ]. IEEE/ ASME Trans Mechatronics, 2010, 15 (6) : 932 - 941. 被引量:1

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部