摘要
The developing flexible electronic equipment are greatly affected by the rapid accumulation of heat,which is urgent to be solved by thermally conductive polymer composite films.However,the interfacial thermal resistance(ITR)and the phonon scattering at the interfaces are the main bottlenecks limiting the rapid and efficient improvement of thermal conductivity coefficients(λ)of the polymer composite films.Moreover,few researches were focused on characterizing ITR and phonon scattering in thermally conductive polymer composite films.In this paper,graphene oxide(GO)was aminated(NH_(2)-GO)and reduced(NH_(2)-rGO),then NH_(2)-rGO/polyimide(NH_(2)-rGO/PI)thermally conductive composite films were fabricated.Raman spectroscopy was utilized to innovatively characterize phonon scattering and ITR at the interfaces in NH_(2)-rGO/PI thermally conductive composite films,revealing the interfacial thermal conduction mechanism,proving that the amination optimized the interfaces between NH_(2)-rGO and PI,reduced phonon scattering and ITR,and ultimately improved the interfacial thermal conduction.The in-planeλ(λ∥)and through-planeλ(λ_(⊥))of 15 wt%NH_(2)-rGO/PI thermally conductive composite films at room temperature were,respectively,7.13 W/mK and 0.74 W/mK,8.2 timesλ∥(0.87 W/mK)and 3.5 timesλ_(⊥)(0.21 W/mK)of pure PI film,also significantly higher thanλ∥(5.50 W/mK)andλ_(⊥)(0.62 W/mK)of 15 wt%rGO/PI thermally conductive composite films.Calculation based on the effective medium theory model proved that ITR was reduced via the amination of rGO.Infrared thermal imaging and finite element simulation showed that NH_(2)-rGO/PI thermally conductive composite films obtained excellent heat dissipation and efficient thermal management capabilities on the light-emitting diodes bulbs,5G high-power chips,and other electronic equipment,which are easy to generate heat severely.
出处
《Research》
SCIE
EI
CAS
CSCD
2021年第1期518-530,共13页
研究(英文)
基金
the support and funding from the National Natural Science Foundation of China(51973173 and 51773169)
the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)
Y.Q.Guo thanks for the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX202055)
C.Y.Lu thanks for the Undergraduate Innovation&Business Program in Northwestern Polytechnical University(S202010699141)。