期刊文献+

A novel approach to determine residual stress field during FSW of AZ91 Mg alloy using combined smoothed particle hydrodynamics/neuro-fuzzy computations and ultrasonic testing 被引量:2

下载PDF
导出
摘要 The faults in welding design and process every so often yield defective parts during friction stir welding(FSW).The development of numerical approaches including the finite element method(FEM)provides a way to draw a process paradigm before any physical implementation.It is not practical to simulate all possible designs to identify the optimal FSW practice due to the inefficiency associated with concurrent modeling of material flow and heat dissipation throughout the FSW.This study intends to develop a computational workflow based on the mesh-free FEM framework named smoothed particle hydrodynamics(SPH)which was integrated with adaptive neuro-fiizzy inference system(ANFIS)to evaluate the residual stress in the FSW process.An integrated SPH and ANFIS methodology was established and the well-trained ANIS was then used to predict how the FSW process depends on its parameters.To verify the SPH calculation,an itemized FSW case was performed on AZ91 Mg alloy and the induced residual stress was measured by ultrasonic testing.The suggested methodology can efficiently predict the residual stress distribution throughout friction stir welding of AZ91 alloy.
出处 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1311-1335,共25页 镁合金学报(英文)
  • 相关文献

同被引文献7

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部