期刊文献+

Dynamics of a stochastic Holling II predator-prey model with Levy jumps and habitat complexity

原文传递
导出
摘要 This paper investigates a stochastic Holling II predator-prey model with Levy jumps and habit complexity.It is first proved that the established model admits a unique global positive solution by employing the Lyapunov technique,and the stochastic ultimate boundedness of this positive solution is also obtained.Sufficient conditions are established for the extinction and persistence of this solution.Moreover,some numerical simulations are carried out to support the obtained results.
出处 《International Journal of Biomathematics》 SCIE 2021年第6期297-312,共16页 生物数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11901398,11671149,11871225 and 11771102) Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011350) the Fundamental Research Funds for the Central Universities(No.2018MS58).
  • 相关文献

参考文献1

二级参考文献17

  • 1S. Aida, S. Kusuoka and D. Strook, On the support of Wiener functionals, in Asymp- totic Problems in Probability Theory: Wiener Functionals and Asymptotic, eds. K. D. Elworthy and N. Ikeda, Pitman Research Notes in Mathematics Series, Vol. 284 (Longman Scientific and Technical Publisher, 1993), p. 3. 被引量:1
  • 2G. B. Arous and R. Landre, Dcroissance exponentielle du noyau de la chaleur sur la diagonale (11), Probab. Theory Relat. Fields 90 (1991) 377. 被引量:1
  • 3M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Left. 16 (2003) 1069-1075. 被引量:1
  • 4J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anita. Ecol. 44 (1975) 331-340. 被引量:1
  • 5D. R. Bell, The Malliavin Calculus (Dover Publications, New York, 2006). 被引量:1
  • 6N. Dalai, D. Greenhalgh and X. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl. 325 (2007) 36-53. 被引量:1
  • 7C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Men. Ent. See. Can. 45 (1965) 1-60. 被引量:1
  • 8C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 359 (2009) 482-498. 被引量:1
  • 9C. Y. Ji, D. Q. Jiang and N. Z. Shi, A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 377 (2011) 435-440. 被引量:1
  • 10Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator- prey system, J. Math. Biol. 36 (1998) 389-406. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部