期刊文献+

Long-time behavior of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes 被引量:3

Long-time behavior of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes
原文传递
导出
摘要 In this paper, we consider a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes. We analyze long-time behavior of densities of the distri- butions of the solution. We prove that the densities can converge in L1 to an invariant density or can converge weakly to a singular measure under appropriate conditions.
出处 《International Journal of Biomathematics》 2016年第3期121-138,共18页 生物数学学报(英文版)
关键词 Diffusion process Markov semigroups asymptotic stability. Holling 长时间行为 捕食模型 莱斯 随机 溶液密度 分布密度 弱收敛
  • 相关文献

参考文献17

  • 1S. Aida, S. Kusuoka and D. Strook, On the support of Wiener functionals, in Asymp- totic Problems in Probability Theory: Wiener Functionals and Asymptotic, eds. K. D. Elworthy and N. Ikeda, Pitman Research Notes in Mathematics Series, Vol. 284 (Longman Scientific and Technical Publisher, 1993), p. 3. 被引量:1
  • 2G. B. Arous and R. Landre, Dcroissance exponentielle du noyau de la chaleur sur la diagonale (11), Probab. Theory Relat. Fields 90 (1991) 377. 被引量:1
  • 3M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Left. 16 (2003) 1069-1075. 被引量:1
  • 4J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anita. Ecol. 44 (1975) 331-340. 被引量:1
  • 5D. R. Bell, The Malliavin Calculus (Dover Publications, New York, 2006). 被引量:1
  • 6N. Dalai, D. Greenhalgh and X. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl. 325 (2007) 36-53. 被引量:1
  • 7C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Men. Ent. See. Can. 45 (1965) 1-60. 被引量:1
  • 8C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 359 (2009) 482-498. 被引量:1
  • 9C. Y. Ji, D. Q. Jiang and N. Z. Shi, A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 377 (2011) 435-440. 被引量:1
  • 10Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator- prey system, J. Math. Biol. 36 (1998) 389-406. 被引量:1

同被引文献2

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部