Long-time behavior of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes
被引量:3
Long-time behavior of a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes
摘要
In this paper, we consider a stochastic predator-prey model with modified Leslie-Gower and Holling-type II schemes. We analyze long-time behavior of densities of the distri- butions of the solution. We prove that the densities can converge in L1 to an invariant density or can converge weakly to a singular measure under appropriate conditions.
参考文献17
-
1S. Aida, S. Kusuoka and D. Strook, On the support of Wiener functionals, in Asymp- totic Problems in Probability Theory: Wiener Functionals and Asymptotic, eds. K. D. Elworthy and N. Ikeda, Pitman Research Notes in Mathematics Series, Vol. 284 (Longman Scientific and Technical Publisher, 1993), p. 3. 被引量:1
-
2G. B. Arous and R. Landre, Dcroissance exponentielle du noyau de la chaleur sur la diagonale (11), Probab. Theory Relat. Fields 90 (1991) 377. 被引量:1
-
3M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator prey model with modified Leslie-Gower and Holling-type II schemes, Appl. Math. Left. 16 (2003) 1069-1075. 被引量:1
-
4J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anita. Ecol. 44 (1975) 331-340. 被引量:1
-
5D. R. Bell, The Malliavin Calculus (Dover Publications, New York, 2006). 被引量:1
-
6N. Dalai, D. Greenhalgh and X. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl. 325 (2007) 36-53. 被引量:1
-
7C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Men. Ent. See. Can. 45 (1965) 1-60. 被引量:1
-
8C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 359 (2009) 482-498. 被引量:1
-
9C. Y. Ji, D. Q. Jiang and N. Z. Shi, A note on a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl. 377 (2011) 435-440. 被引量:1
-
10Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator- prey system, J. Math. Biol. 36 (1998) 389-406. 被引量:1
同被引文献2
-
1刘群,蒋达清,史宁中,Tasawar HAYAT,Ahmed ALSAEDI.DYNAMICAL BEHAVIOR OF A STOCHASTIC HBV INFECTION MODEL WITH LOGISTIC HEPATOCYTE GROWTH[J].Acta Mathematica Scientia,2017,37(4):927-940. 被引量:6
-
2蓝桂杰,付盈洁,魏春金,张树文.具有非线性食饵收获的随机捕食-食饵模型[J].集美大学学报(自然科学版),2018,23(5):385-394. 被引量:1
引证文献3
-
1Guangjie Li,Qigui Yang.Dynamics of a stochastic Holling II predator-prey model with Levy jumps and habitat complexity[J].International Journal of Biomathematics,2021,14(6):297-312.
-
2叶葱,魏春金,张树文.具有Holling IV功能性反应和非线性收获的随机捕食-食饵模型[J].集美大学学报(自然科学版),2023,28(5):385-396.
-
3李江,魏春金.具有恐惧效应的随机捕食-食饵模型动力学[J].集美大学学报(自然科学版),2023,28(5):397-406.
-
1Fa-yong Zhang,Shu-juan Lu.LONG-TIME BEHAVIOR OF FINITE DIFFERENCE SOLUTIONS OF A NONLINEAR SCHRODINGER EQUATION WITH WEAKLY DAMPED[J].Journal of Computational Mathematics,2001,19(4):393-406. 被引量:5
-
2Shengbin Yu,Fengde Chen.Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type II schemes and mutual interference[J].International Journal of Biomathematics,2014,7(3):81-95. 被引量:8
-
3ZHONG LI MAOAN HAN FENGDE CHEN.GLOBAL STABILITY OF A STAGE-STRUCTURED PREDATOR-PREY MODEL WITH MODIFIED LESLIE-GOWER AND HOLLING-TYPE II SCHEMES[J].International Journal of Biomathematics,2012,5(6):157-169. 被引量:3
-
4Fa-yongZhang.LONG-TIME BEHAVIOR OF FINITE DIFFERENCE SOLUTIONS OF THREE-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH WEAKLY DAMPED[J].Journal of Computational Mathematics,2004,22(4):593-604. 被引量:6
-
5曹莉莉.实次对称次正定矩阵的乔莱斯基分解及次厄米特矩阵与反次厄米特矩阵[J].重庆理工大学学报(自然科学),1995,22(3):19-24. 被引量:10
-
6胡超,竺哲欣,竺江峰.用光拍法研究葡萄糖溶液密度和折射率的关系[J].大学物理实验,2012,25(6):3-5. 被引量:6
-
7刘艳峰.甘油比热容与密度关系的实验研究[J].延安大学学报(自然科学版),2013,32(4):29-32.
-
8韩雪涛.好玩的数学——爱因斯坦钟针对调问题[J].科技导报,2008,26(17):105-105.
-
9李荣.概率比人们所想象的要大[J].自然与科技,2006,0(4):21-23.
-
10Zhao Shufen Huang Jianhua (Dept. of Math., National University of Defense Technology, Changsha 410073).LONG-TIME BEHAVIOR OF A CLASS OF REACTION DIFFUSION EQUATIONS WITH TIME DELAYS[J].Annals of Differential Equations,2006,22(3):477-482.