摘要
针对现有青藏高原光核桃种核表型主要采用手工测量和目视法获得,操作繁琐,且提取参数种类有限的问题,该研究构建了一种基于HSV(Hue,Saturation,Value)空间和拟合椭圆的光核桃种核表型自动量化系统。该系统包括图像自动分割和多重参数提取2个部分,首先,采用HSV阈值法实现光核桃种核图像的精准分割;其次,用拟合椭圆法进行光核桃种核的核尖提取;最后,对光核桃种核形态、颜色、纹理3类表型进行定量描述。结果表明,该系统对光核桃种核的自动分割准确率达到99.7%,且能够实现多种表型的自动、准确量化,为光核桃表型参数研究提供数据基础和技术支持。
Extracting the phenotypic characteristics of Amygdalus mira seeds is to measure the size of a physical object that needs to operate a large number of peach seeds.However,some phenotypic data is still difficult to obtain at present.In this study,an automatic multi-feature extraction system was proposed for peach seeds using HSV color space and edge point detection.The system included three parts.The first part was the collection and image acquisition of Amygdalus mira seeds.Specifically,the Amygdalus mira seeds were collected from the scientific research institutions,and then seed images were captured using a small studio and digital camera.The second part was the image processing of peach seeds.First,the region of interest was obtained on the original image of peach seed,then converted from the RGB to the HSV color space.The threshold segmentation was then selected using the HSV space,in order to remove the seeds from the original image.The purpose of threshold extraction was to determine what threshold range of H space was used to segment the seed kernel and background and then determine the best segmentation of S space under the H threshold range.Finally,the V space threshold was selected in the threshold range of H and S space with the best segmentation,in order that all pictures were the same set of segmentation thresholds,further to realize the preliminary segmentation of peach seed.Binary morphological operations were then utilized to revise the under-and over-segmentation.The third part was the feature extraction and quantification of seeds.First,the morphological features were achieved,including area,shape index,and seed tip state.Specifically,the edge points of seed kernel images were detected to draw the fitting ellipse and separate the tip of seeds.Among them,the tip state was evaluated using the area and sharpness of the seed tip.Subsequently,the color and texture characteristics of the peach kernel were obtained using low-order moments and gray-level co-occurrence matrix.As such,the quantitative anal
作者
韩巧玲
崔树强
徐钐钐
赵玥
赵燕东
Han Qiaoling;Cui Shuqiang;Xu Shanshan;Zhao Yue;Zhao Yandong(School of Technology,Beijing Forestry University,Beijing 100083,China;Beijing Lab of Urban and Rural Ecological Environment,Beijing Municipal Education Commission,Beijing 100083,China;Key Lab of State Forestry Administration for Forestry Equipment and Automation,Beijing,100083,China;Research Center for Intelligent Forestry,Beijing 100083,China)
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第20期202-210,共9页
Transactions of the Chinese Society of Agricultural Engineering
基金
国家自然科学基金青年科学基金(32101590)
北京市共建项目
国家自然科学基金面上项目(32071838)。
关键词
图像识别
图像分割
光核桃
表型参数
拟合椭圆
核尖
image identification
image segmentation
Amygdalus mira
phenotypic parameter
ellipse fitting
seed tip