期刊文献+

基于改进的YOLOv3实现手势识别的人机交互方法 被引量:2

Human-Computer Interaction Method for Gesture Recognition Based on Improved YOLOv3
下载PDF
导出
摘要 随着人工智能技术的飞速发展,人机交互方法也发生了巨大的变化.鉴于目前主要的人机交互方式仍是使用键盘、鼠标和触控板组合的传统交互方式,本文提出一种基于改进的YOLOv3实现手势识别的人机交互方法,通过Kmeans对标签的边界框进行聚类,然后运用Mosaic数据增强丰富小目标,最后采用自定义最小化边界框中心点距离的GCDIoU损失函数优化模型参数.在自建数据集上进行实验验证,该模型针对手势小目标的检测准确率达到98.87%,召回率达到99.98%.结果表明,Mosaic数据增强应用于小目标检测具有很好的效果,而GCDIoU损失函数则加快了模型的收敛. With the rapid development of artificial intelligence technology,human-computer interaction has also undergone tremendous changes.In view of the fact that most people are still using the traditional interaction method of keyboard,mouse and touchpad,in this article we propose a method of real-time gesture recognition and human-computer interaction based on the improved YOLOv3.Specifically,the bounding box of the label was first clustered through K-means.Then the small targets were enriched by Mosaic data enhancement,and finally the GCDIoU loss function that minimizes the distance between the center points of the bounding box was used.Through the above methods,the final model's detection accuracy for small gesture targets reached 98.87%,and the recall rate reached 99.98%.Therefore,Mosaic data enhancement has a good effect when applied to small target detection,while GCDIoU loss function speeds up the convergence of the model,and the effect is better.
作者 苏静 刘兆峰 王嫄 冯柯翔 王晓薇 SU Jing;LIU Zhaofeng;WANG Yuan;FENG Kexiang;WANG Xiaowei(College of Artificial Intelligence,Tianjin University of Science&Technology,Tianjin 300457,China)
出处 《天津科技大学学报》 CAS 2021年第6期49-54,共6页 Journal of Tianjin University of Science & Technology
基金 天津科技大学创新创业训练计划项目(202010057204)。
关键词 人工智能 人机交互 手势识别 YOLOv3 artificial intelligence human-computer interaction gesture recognition YOLOv3
  • 相关文献

参考文献3

二级参考文献19

  • 1Anil K J. Data clustering:50 years beyond K-Means[J].Pattern Recognition Letters,2010,(08):651-666. 被引量:1
  • 2Likas A,Vlassis M,Verbeek J. The global K-means clustering algorithm[J].Pattern Recognition,2003,(02):451-461.doi:10.1016/S0031-3203(02)00060-2. 被引量:1
  • 3Selim S Z,Al-Sultan K S. Analysis of global K-means,an incremental heuristic for minimum sum-of-squares clustering[J].Journal of Classification,2005,(22):287-310. 被引量:1
  • 4Bellman R,Dreyfus S. Applied dynamic programming[M].Princeton,New Jersey:Princeton University Press,1962. 被引量:1
  • 5Aloise D,Deshpande A,Hansen P. NP-hardness of euclidean sum-of-squares clustering[J].Machine Learning,2009,(02):245-248. 被引量:1
  • 6Mahajan M,Nimbor P,Varadarajan K. The planar K-means problem is NP-hard[J].Lecture Notes in Computer Science,2009,(5431):274-285. 被引量:1
  • 7Ball G,Hall D. ISODATA,a novel method of data analysis and pattern classification[Technical rept. NTIS AD 699616. ][M].California:Stanford Research Institute,1965. 被引量:1
  • 8WANG Cheng,LI Jiao-jiao,BAI Jun-qing. Max-Min K- means Clustering Algorithm and Application in Post-processing of Scientific Computing[A].Napoli,2011.7-9. 被引量:1
  • 9Pena J M,Lozano J A,Larranaga P. An empirical comparison of four initialization methods for the K-means algorithm[J].Pattern Recognition Letters,1999,(20):1027-1040.doi:10.1016/S0167-8655(99)00069-0. 被引量:1
  • 10Lai J Z C,Tsung-Jen H. Fast global K-means clustering using cluster membership and inequality[J].Pattern Recogni- tion,2010,(43):1954-1963. 被引量:1

共引文献314

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部