期刊文献+

基于改进YOLOv3的手势实时识别方法 被引量:8

Real-time Hand Gesture Recognition Method Based on Improved YOLOv3
下载PDF
导出
摘要 针对基于人工建模方式的手势识别方法准确率低、速度慢的问题,提出一种基于改进YOLOv3的静态手势实时识别方法。采用卷积神经网络YOLOv3模型,将通过Kinect设备采集的IR、Registration of RGB、RGB和Depth图像代替常用的RGB图像作为数据集,并融合四类图像的识别结果以提高识别准确率。采用k-means聚类算法对YOLOv3中的初始候选框参数进行优化,从而加快识别速度。在此基础上,利用迁移学习的方法对基础特征提取器进行改进,以缩短模型的训练时间。实验结果表明,该方法对流式视频静态手势的平均识别准确率为99.8%,识别速度高达52 FPS,模型训练时间为12 h,与Faster R-CNN、SSD、YOLOv2等深度学习方法相比,其识别精度更高,识别速度更快。 The hand gesture recognition method based on artificial modeling has many problems such as low accuracy and slow speed.Therefore,this paper proposes a static hand gesture recognition method based on improved YOLOv3.By using the convolutional neural network YOLOv3 model,the commonly used RGB images are replaced by the IR,Registration of RGB,RGB and Depth images collected by Kinect equipment as dataset.The recognition results of these 4 types of images are fused to improve the recognition accuracy.The k-means clustering algorithm is used to optimize the initial candidate frame parameters in YOLOv3,so as to improve the recognition speed.On this basis,the transfer learning is used to improve the basic feature extractor to shorten the training time of the model.Experimental results show that for the recognition of static hand gestures in stream videos,the mean Average Precision(mAP)of the proposed method is 99.8% and the recognition speed is up to 52 FPS.The training time of the proposed model is 12 hours,and its recognition accuracy and speed is better than other deep learning methods such as Faster R-CNN,SSD and YOLOv2.
作者 张强 张勇 刘芝国 周文军 刘佳慧 ZHANG Qiang;ZHANG Yong;LIU Zhiguo;ZHOU Wenjun;LIU Jiahui(School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第3期237-245,253,共10页 Computer Engineering
基金 国家自然科学基金(61801162) 国家大学生创新训练项目(201710359020)。
关键词 手势识别 YOLOv3模型 Kinect设备 聚类算法 迁移学习 hand gesture recognition YOLOv3 model Kinect equipment clustering algorithm transfer learning
  • 相关文献

参考文献8

二级参考文献52

  • 1刘寅,滕晓龙,刘重庆.复杂背景下基于傅立叶描述子的手势识别[J].计算机仿真,2005,22(12):158-161. 被引量:30
  • 2Leap motion [ EB/OL ]. http ://www. leapmotion, com/,2013. 被引量:1
  • 3Stamer T, Pentland A. Real-time American sign language recogni- tion from video using hidden markov models [ M ]. Motion-based Recognition. Springer Netherlands, 1997 : 227-243. 被引量:1
  • 4Corradini A. Dynamic time warping for off-line recognition of small gesture vocabulary[ C]. Proceedings of ICCV Workshop on ,Re.cog- nition,Analysis, and Tracking of Faces and Gestures in Real-time Systems, IEEE,2001 : 82 -89. 被引量:1
  • 5Belongie S,Malik J,Puzicha J. Shape context:a new descriptor for shape matching and object recognition [ C ]. Neural Information Pro- cessing Systems ,2000:2-3. 被引量:1
  • 6Ding Y ,Pang H ,Wu X. Static hand-gesture recognition using HOG and improved LBP features [ J ]. International Journal of Digital Content Technology & its Applications,2011,5 ( 11 ) :236-243. 被引量:1
  • 7Liu L, Xing J, Ai H, et al. Hand posture recognition using finger ge- ometric feature [ C ]. Proceeding of 21st International Conference on. Pattern Recognition ( ICPR ), IEEE,2012:565 -568. 被引量:1
  • 8Dalal N, Triggs B. Histograms of oriented gradients for human de- tection [ C ]. IEEE Computer Society Conference on, Computer Vi- sion and Pattern Recognition, IEEE, 2005,1 : 886-893. 被引量:1
  • 9Rahrnani H,Mahmood A, Huynh D Q, et al. HOPC :histogram of o- riented principal components of 3D pointclouds for action recogni- tion [ M ]. Computer Vision-ECCV 2014, Springer International Publishing, 2014 : 742 -757. 被引量:1
  • 10Kinect [ EB/OL ]. http ://www. xbox. com/en-US/kinect/,2011. 被引量:1

共引文献45

同被引文献65

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部