期刊文献+

基于ARIMA模型的临床血小板需求预测研究 被引量:8

Prediction on clinical platelet demand in Suzhou based on ARIMA model
下载PDF
导出
摘要 目的建立适用于苏州市区临床血小板需求预测ARIMA模型,以此为参考预测未来的临床血小板需求量,从需求出发,为采供血机构对本地区血小板采集制备、库存管理、临床调配提供科学参考依据,最大程度实现血小板的供需平衡。方法收集苏州市区2009~2019年血小板每月临床用量数据,运用SPSS 26软件分析,采用时间序列分析方法,建立ARIMA模型,通过模型识别、参数估计及最优模型检验,确定临床血小板需求预测的最优模型;运用所得最优模型对2020年1~11月的血小板临床用量进行预测,将预测值与实际数值比较,验证模型预测效果。结果血小板临床需求量预测的最优模型为ARIMA(0,1,1)(0,1,1)_(12),残差的ACF自相关函数值和PACF偏自相关函数值均在95%CI内,同时杨-博克斯Q统计量值为13.982(P>0.05),差异无统计学意义,说明残差序列不存在自相关,通过白噪声检验。对2020年1~11月苏州市区血小板临床用量进行预测,除2020年2月外,预测值与实际值曲线趋势基本相同,且预测值均在95%CI内,平均相对误差较小,为7.22%,低于10%,模型预测效果较好。结论ARIMA模型可用于苏州市区血小板临床使用量的短期预测,为血小板的合理采集、制备和科学调配提供依据。 Objective To establish an ARIMA model suitable for clinical platelet demand prediction in Suzhou,which can be used as reference to predict future clinical platelet demand and provide scientific basis for platelet collection,preparation,stock management and clinical deployment for blood banks,so as to achieve the maximum balance between platelets supply and demand.Methods The data of platelet consumption in Suzhou from 2009 to 2019 were collected and analyzed by SPSS 26 software,Time series analysis method was used to establish the ARIMA model.The model was further optimized through model identification,parameter estimation and optimal model test,and then used to predict clinical platelet consumption from January to November 2020.The predicted value was compared with the actual value to verify the prediction effect of the model.Results The optimal model for the prediction of platelet clinical demand was ARIMA(0,1,1)(0,1,1)_(12).The ACF autocorrelation function value and PACF partial autocorrelation function value of the residuals were within 95%CI.Meanwhile,the LJUNG BOX test was 13.982(P>0.05),indicating that there was no autocorrelation in the residuals.The trend of the curve between the predicted and actual value was basically the same(except for February 2020),and the predicted values were within 95%CI,with the average relative error of 7.22%,which was lower than 10%,showing good prediction effect.Conclusion ARIMA model can be used for short-term prediction of clinical platelets demand in Suzhou,and can provide basis for reasonable collection,preparation and deployment of platelets.
作者 张思静 谢淑红 ZHANG Sijing;XIE Shuhong(Suzhou Blood Center,Suzhou 215006,China)
机构地区 苏州市中心血站
出处 《中国输血杂志》 CAS 2021年第10期1134-1137,共4页 Chinese Journal of Blood Transfusion
基金 苏州市级科技计划项目(SS202081)。
关键词 ARIMA模型 血小板 临床需求 模型 预测 ARIMA model platelet clinical demand model prediction
  • 相关文献

参考文献6

二级参考文献53

共引文献47

同被引文献98

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部