期刊文献+

不同时间序列分析法在洞庭湖区血吸虫病发病预测中的比较 被引量:21

Application of "time series analysis" in the prediction of schistosomiasis prevalence in areas of "breaking dikes or opening sluice for waterstore" in Dongting Lake areas, China
原文传递
导出
摘要 目的 通过比较时间序列分析中指数平滑法、移动平均法、自回归分析及自回归综合移动平均法(ARIMA)在洞庭湖区退田还湖濠口试点1990~2002年血吸虫病患病率预测中的优劣。方法 用时间序列分析各方法建模预测,比较各方法1994~2002年预测值的误差平方和,确定最佳预测方法。结果 指数平滑法、移动平均法、自相关分析及ARIMA法中1994~2002年预测值的误差平方和依次为39.40、39.86、26.63、22.54。结论 濠口试点1990~2002年患病率预测中,时间序列分析诸方法中ARIMA模型预测效果较好。 Objective To provide the fittest model for forecasting schistosomiasis prevalence in Haokou village of 'breaking dikes or opening sluice for waterstore' in Dongting Lake areas by comparing the results of Moving Average, Exponential Smoothing, Autoregressive Model and Autoregressive integrated moving average model (ARIMA model) from 1990 to 2002. Methods Error sum of square of four statistical methods was compared and the fittest model was chosen. Results Error sum of square of predicted schistosomiasis prevalence rates in Haokou village from 1994 to 2002 were 39.40,39.86, 26.63, 22.54 respectively. Conclusion ARIMA model seemed to be the fittest one in the prediction of schistosomiasis prevalence in Haokou village of 'breaking dikes or opening sluice for waterstore' in Dongting Lake from 1990 to 2002.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2004年第10期863-866,共4页 Chinese Journal of Epidemiology
基金 国家"十五"科技攻关课题资助项目(2001BA705B08)
关键词 血吸虫病 不同时间 发病预测 患病率 中指 移动平均法 序列分析 口试 Schistosomiasis Time series analysis Statistical prediction
  • 相关文献

参考文献3

  • 1Diaz J,Garcia R,Velazquez,et al. Effects of extremely hot days on people older than 65 years in Seville (Spain) from 1986 to 1997. Int J Biometeorol,2002,46:145-149. 被引量:1
  • 2McCleary R,Chew KS,Merrill V,et al. Does legalized gambling elevate the risk of suicide? An analysis of U.S. counties and metropolitan areas.Suicide Life Threat Behav,2002,32:209-210. 被引量:1
  • 3Clancy L,Goodman P,Sinclair H,et al. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study.Lancet,2002,360:1210-1214. 被引量:1

同被引文献194

引证文献21

二级引证文献216

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部