摘要
基于迭代的图像风格转换在图像重组时未考虑内容图像的结构,导致生成的图像存在线条扭曲。为约束图像重组时的信息,提出一种基于边缘检测的图像风格转换算法。通过Sobel滤波器在内容图像和生成图像相同的卷积层上提取边缘信息,同时以均方误差作为损失函数。在此基础上,将边缘损失、内容损失和风格损失的加权代数和作为神经网络的总损失。实验结果表明,该算法能够有效抑制图像的线条扭曲,减少图像噪声,生成更高质量的图像。
Iteration-based image style transformation does not consider the structure of content image,resulting in a distortion of lines in the generated image.To solve the problem,an algorithm based on edge detection is proposed to constrain the information during image reorganization.The Sobel filter is used to extract edge information on the same convolutional layer of the content image and the generated image.The loss function selects the mean square error,and the weighted algebraic sum of edge loss,content loss and style loss is taken as the total loss of the neural network.The experimental results show that the proposed algorithm can effectively reduce the distortion of image lines and the image noise,and improves the quality of generated images.
作者
陈志鹏
郑文秀
黄琼丹
CHEN Zhipeng;ZHENG Wenxiu;HUANG Qiongdan(School of Communication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2021年第12期274-277,284,共5页
Computer Engineering
基金
陕西省重点研发计划项目(2018GY-150)。
关键词
图像风格转换
边缘检测
Sobel滤波器
卷积神经网络
均方误差
image style transformation
edge detection
Sobel filter
Convolutional Neural Network(CNN)
mean square error