期刊文献+

基于PPYOLO的电池片缺陷检测 被引量:2

Defect detection of solar cells based on PPYOLO
下载PDF
导出
摘要 为进一步提升太阳能电池片表面缺陷检测效率,改进深度学习检测算法PPYOLO,添加索贝尔(Sobel)算子对输入图片进行处理得到缺陷边缘信息,此边缘信息会过滤大部分正常区域信息,同时能更快找到缺陷区域位置。再将边缘信息和原始图片拼接输入到网络模型中,这样既保留了原始图片的特征,又能防止Sobel算子处理后的信息存在缺失所导致的特征信息丢失。为验证该算法,在高清电池片数据集上进行仿真实验。实验结果表明,添加Sobel算子后的改进PPYOLO模型检测效率有所提升,表现为mAP提升1.4%,并且mAP相比于其他不同输入尺寸和模型大小的算法提升效果超过20%。 In order to improve the detection efficiency of solar cell surface defects,the deep learning detection algorithm PPYOLO was improved,and Sobel operator was added to process the input image to obtain the defect edge information.The edge information will filter most of the normal area information and can find the defect area location faster.Then the edge information and the original image were combined to input into the model,which not only preserved the features of the original image,but also prevented the loss of feature information caused by the missing information processed by Sobel operator.In order to verify the algorithm,a simulation experiment was carried out on high-definition battery data.The experimental results show that the improved PPYOLO model detection efficiency is improved after adding Sobel operator,and the mAP increases by 1.4%.Compared with other algorithms with different input sizes and model sizes,the improvement effect of mAP is more than 20%.
作者 韩钰 郑金亮 王磊 蔡培君 王晨旸 王紫玉 HAN Yu;ZHENG Jinliang;WANG Lei;CAI Peijun;WANG Chenyang;WANG Ziyu(Jianghuai College of Anhui University,Hefei 230031,China)
出处 《邵阳学院学报(自然科学版)》 2023年第4期8-16,共9页 Journal of Shaoyang University:Natural Science Edition
基金 安徽省高等学校科学研究重点项目(2022AH053061)。
关键词 缺陷检测 电池片 PPYOLO 索贝尔(Sobel)算子 defect detection cells PPYOLO Sobel operator
  • 相关文献

参考文献11

二级参考文献74

  • 1陈文志,张凤燕,张然,李超.基于电致发光成像的太阳能电池缺陷检测[J].发光学报,2013,34(8):1028-1034. 被引量:15
  • 2多晶硅太阳能电池制作工艺概述[J].有机硅氟资讯,2004(10):37-39. 被引量:2
  • 3章玲,蒋建国,齐美彬.一种微分与积分投影相结合的眼睛定位方法[J].合肥工业大学学报(自然科学版),2006,29(2):182-185. 被引量:13
  • 4Bengio Y. learning Deep Architectures for Al. Foundations andTrends in Machine Learning, 2009 , 2(1): 1-127. 被引量:1
  • 5Hinton G E,SaIakhut(Jinov R R. Reducing the Dimensionality ofData with Neural Networks. Science, 2006, 313(5786) : 504-507. 被引量:1
  • 6Bengio Y, Delalleau 0. On the Expressive Power of Deep Archilec-tures // Proc of the 22nd International Conference on Algorithmiclearning Theory. Ksp[M], Finland,2011: 18-36. 被引量:1
  • 7Yoshua B, l^eCun Y. Scaling Learning Algorithms towards Al.Cambridge,USA : MIT Press, 2007. 被引量:1
  • 8Dahl G E, Yu d, Deng L, el al. Context-Dependent Pre-trainedDeep Neural Networks for Large-Vocabulary Speech Recognition.IEEE Trans on Audio, Speech and Language Processing, 2012,20(1):30-42. 被引量:1
  • 9Hinton G,Deng L, Yu D, et al. Deep Neural Networks for AcousticModeling in Speech Recognition : The Shared Views of FourResearch Groups. IEEE Signal Processing Magazine, 2012, 29(6) : 82-97. 被引量:1
  • 10Sungjoon C, Kim E, Oh S. Human Behavior Prediction for SmartHomes Using Deep Learning // Proc of the 22nd IEEE InternationalSymposium on Robot and Human Interactive Communication. Gyeo-ngju, Republic of Korea, 2013 : 173-179. 被引量:1

共引文献148

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部