摘要
笔者提出基于网格选择的多模态多目标优化算法,其创新之处包括设计了一个解决多模态多目标优化问题兼顾全局搜索与局部搜索的算法框架,提出了基于参考向量的动态子种群分配策略和动态自适应的网格选解方法。为验证算法的性能,将其在12个多模态多目标测试问题上与最新的多模态多目标算法进行比较。实验结果表明,所提出的算法能有效解决多模态多目标优化问题,并在某些测试问题上表现出了优异的性能。
This paper presents a multi-modal multi-objective optimization algorithm based on grid selection. Its innovations include the design of a solution to multimodal multi-objective optimization problems. To verify the performance of the algorithm, it is compared with the latest multi-modal multi-objective algorithm on 12 multi-modal multi-objective test problems. The results show that the proposed algorithm can effectively solve multimodal multi-objective optimization problems. Excellent performance on some test issues.
作者
褚晓凯
张佳星
屈俊峰
CHU Xiaokai;ZHANG Jiaxing;QU Junfeng(School of Information Engineering,Hebei GEO University,Shijiazhuang Hebei 050031,China;School of Computer Engineering,Hubei University of Arts and Science,Xiangyang Hubei 441053,China)
出处
《信息与电脑》
2021年第19期54-57,共4页
Information & Computer
基金
襄阳市2020年农业领域重点科技创新计划“基于多源异构大数据平台的精准农业智能化服务系统的研发与应用”(项目编号:2020ABA002240)。
关键词
多模态多目标优化问题
局部搜索
参考向量
网格
multi-modal multi-objective optimization problem
local search
reference vector
grid