期刊文献+

基于数据安全标识的个人数据空间安全技术 被引量:2

Personal Data Space Security Technology Based on Data Security Label
下载PDF
导出
摘要 随着大数据、云计算和人工智能等新一代信息技术的快速发展,数据已成为数字时代的基础性战略资源和关键生产要素.国家十四五规划中除了强调数据的高效使用、最大程度发挥数据的价值之外,还明确必须加强数据安全的保护.基于“标识数据、动态防护、梳理角色、明确流程、精确管控”的数据安全理念,依托于以数据安全等级评估模型和密码学技术为核心的数据安全标识技术,为个人数据生命周期中各个环节的安全防护提供了基础的信息支撑,结合个人数据空间以对象为中心融合、管理以及分享个人数据的特点,为个人数据的高效利用以及安全防护提供了解决方案. With the rapid development of new-generation information technologies such as big data,cloud computing,and artificial intelligence,data has become a basic strategic resource and key production factor in the digital age.In addition to emphasizing the efficient use of data and maximizing the value of data in the National Fourteenth Five-Year Plan,it is also clear that the protection of data security must be strengthened.This article is based on the data security concept of“identifying data,dynamic protection,sorting out roles,clarifying processes,and precise management and control”.It relies on data security label technology with data security level assessment models and cryptography technology providing basic information support for the security protection of each link in the personal data life cycle.Combined with the object-centric integration,management,and sharing of personal data in the personal data space,this article provides solutions for the efficient use of personal data and security protection.
作者 黄继明 孙伟 张武军 陆佳星 Huang Jiming;Sun Wei;Zhang Wujun;Lu Jiaxing(School of Electronic Information and Engineering,Sun Yet-sen University(School of Microelectronics),Guangzhou 510006;Key Laboratory of Information Technology(Sun Yat-sen University),Ministry of Education,Guangzhou 510006;Data Center of First Affiliated Hospital of Sun Yat-sen University,Guangzhou 510006)
出处 《信息安全研究》 2021年第12期1150-1154,共5页 Journal of Information Security Research
基金 健康数据空间设计及其应用示范项目(71010078)。
关键词 数据安全 数据安全标识 数据治理 数据空间 数据融合 data security data security label data governance data space data fusion
  • 相关文献

参考文献7

二级参考文献74

  • 1常永新.我国电子政务信息安全问题分析[J].人民论坛(中旬刊),2011(5):234-235. 被引量:13
  • 2刘邦凡.浅析电子政务建设原则[J].电子政务,2005(15):68-78. 被引量:2
  • 3Hristidis V, Gravano L, Papakonstantinou Y. Efficient IR-style keyword search over relational databases. In: Proc. of the 29th Int'l Conf. on Very Large Data Bases (VLDB 2003). New York: ACM Press, 2003. 850-861. 被引量:1
  • 4Bhalotia G, Hulgeri A, Nakhe C, Chakrabarti S, Sudarshan S. Keyword searching and browsing in databases using BANKS. In: Proc. of the 18th Int'l Conf. on Data Engineering (ICDE 2002). Dallas: IEEE Computer Society, 2002.431-440. 被引量:1
  • 5Shao F, Guo L, Botev C, Bhaskar A, Chettiar M, Yang F. Efficient keyword search over virtual XML views. In: Proc. of the 33rd Int'l Conf. on Very Large Data Bases (VLDB 2007). New York: ACM Press, 2007. 1057-1068. 被引量:1
  • 6Guo L, Shao F, Botev C, Shanmugasundaram J. XRANK: Ranked keyword search over XML documents. In: Proc. of the 23rd Int'l Conf. on Management of Data (SIGMOD 2003). New York: ACM Process, 2003. 16-27. 被引量:1
  • 7Levy AY, Rajaraman A, Ordille JJ. Querying heterogeneous information sources using source descriptions. In: Proc. of the 22nd Int'l Conf. on Very Large Data Bases (VLDB 1996). San Fransisco: Morgan Kaufmann Publishers, 1996. 251-262. 被引量:1
  • 8Qiu F, Cho J. Automatic identification of user interest for personalized search. In: Proc. of the 15th Int'l World Wide Web Conf. (WWW2006). New York: ACM Press, 2006. 727-736. 被引量:1
  • 9Copeland GP, Khoshafian S. A decomposition storage model. SIGMOD Record, 1985,14(4):268-279. 被引量:1
  • 10Agrawal R, Somani A, Xu Y. Storage and querying of e-commerce data. In: Proc. of the 27th Int'l Conf. on Very Large Data Bases (VLDB 2001). San Fransisco: Morgan Kaufmann Publishers, 2001. 149-158. 被引量:1

共引文献74

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部