期刊文献+

含氮金属有机框架衍生的铜基催化剂电催化还原二氧化碳 被引量:7

Cu-Based Catalyst Derived from Nitrogen-Containing Metal Organic Frameworks for Electroreduction of CO
下载PDF
导出
摘要 将二氧化碳转化为高附加值的燃料和化学品是缓解当前能源和环境危机的有效策略之一。众所周知,铜基纳米材料是电还原二氧化碳的良好催化剂,但仍存在选择性低和耐久性差等缺点。本文中,我们以Cu-NBDC MOF为前驱体,通过退火得到了一种锚定在氮掺杂多孔碳上的Cu_(2)O/Cu催化剂(Cu_(2)O/Cu@NC)。XPS结果显示,Cu_(2)O/Cu@NC中的CuN含量随着退火温度升高而降低。通过电还原二氧化碳测试结果分析,我们发现与不含氮的Cu_(2)O/Cu@C相比,Cu_(2)O/Cu@NC有效抑制了副反应HER,提高了电还原二氧化碳反应的整体催化活性,而且随着Cu-N含量的增加,Cu_(2)O/Cu@NC对乙烯和甲烷的选择性得到显著提高。在400℃退火处理下,Cu_(2)O/Cu@NC的CO_(2)催化效率高于86%(-1.4--1.6V vs.RHE),其中包括20.4%的C_(2)H_(4)(-1.4V vs.RHE)和23.9%的CH4(-1.6V vs.RHE)。相比之下,Cu_(2)O/Cu@C的二氧化碳还原效率最高不足50%,且无明显乙烯和甲烷生成。我们认为这些显著的催化性能差异主要归因于Cu-N有利于稳定二氧化碳还原反应中*CH2中间体的吸附,抑制*H生成氢气。这些结果表明,通过调控氮的掺杂可以有效改变铜基MOF衍生的催化剂的二氧化碳还原路径并提高其催化性能。 With the development of human society and economy, the demand for energy resources has also increased rapidly. However, the use of traditional fossil energy leads to high amounts of carbon dioxide emissions, causing severe greenhouse effects. This, in turn, triggers a series of environmental problems. Harnessing renewable energy such as solar energy, wind energy, and hydropower to replace the traditional energy sources is very urgent. Conversion Co_(2) into valueadded fuels and chemicals could be a useful strategy to mitigate the current energy and environmental crisis. It is well known that Cu-based materials are good electrocatalysts for the electrochemical reduction of Co_(2) (ECR-Co_(2) ). However, they suffer from some disadvantages such as high overpotential and poor selectivity and durability. Therefore, the development of copper based electrocatalysts with high activity and selectivity is essential.Metal-organic frameworks(MOFs) materials that have the advantages of large specific surface area,tunable pore size and porosity,and highly dispersed unsaturated metal centers can be used as electrocatalysts for Co_(2) reduction or as precursors for further preparation of catalysts with excellent performance.Through thermal decomposition in an inert atmosphere,metal ions in MOF can be transformed into metal clusters,metal oxides,or even metal mono-atoms.Meanwhile,organic ligands are carbonized into porous carbon materials.The addition of some heteroatoms such as B,N,P,and S to carbon materials has also been shown to be effective in changing the electron state and coordination structure of the catalysts.These heteroatoms combine with carbon atoms to form a new active site,denoted as M-X-C(M is the central metal ion and X is the mixed heteroatom) to enhance the catalytic activity of the ECR-Co_(2) .Herein,pre-synthesized Cu-NBDC MOF(a Cu-based MOF synthesized by using 2-aminoterephthalic acid(NBDC) as ligand) is used as a precursor to anchor Cu_(2)O/Cu on nitrogen doped porous carbon(Cu_(2)O/Cu@NC) by annealing at
作者 金惠东 熊力堃 张想 连跃彬 陈思 陆永涛 邓昭 彭扬 Huidong Jin;Likun Xiong;Xiang Zhang;Yuebin Lian;Si Chen;Yongtao Lu;Zhao Deng;Yang Peng(Soochow Institute of Energy and Material Innovations,College of Energy,Soochow University,Suzhou 215006,Jiangsu Province,China;Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies,Soochow University,Suzhou 215006,Jiangsu Province,China)
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2021年第11期114-124,共11页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21701118) 江苏省高校自然科学研究重大项目(18KJA480004) 江苏省六大人才高峰计划(XCL-057,XCL-062,TD-XCL-006)资助。
关键词 铜基MOFs材料 氮掺杂 CU O/Cu 二氧化碳还原 Copper-based MOFs material Nitrogen doping Cu2O/Cu CO2 reduction
  • 相关文献

参考文献6

二级参考文献40

  • 1杨艳,张云,胡劲松,万立骏.电催化CO2还原合成C2+产物的机理和材料研究进展[J].物理化学学报,2020,36(1):70-82. 被引量:15
  • 2He, M. Y.; Sun, Y. H.; Han, B. X. Angew. Chem. Int. Edit. 2013, 52, 9620. doi: 10.1002/anie.201209384. 被引量:1
  • 3Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/C1CS15008A. 被引量:1
  • 4Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, Z. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E. 被引量:1
  • 5Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627. 被引量:1
  • 6周峰, 刘士民, Alshammari, A. S., 邓友全. 科学通报, 2015, 60, 2466. 被引量:1
  • 7Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G. 被引量:1
  • 8Rosen, B. A.; Salehi-khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643. doi: 10.1126/science.1209786. 被引量:1
  • 9Agarwal, A. S.; Zhai, Y. M.; Hill, D.; Sridhar, N. ChemSusChem 2011, 4, 1301. doi: 10.1002/cssc.201100220. 被引量:1
  • 10Chen, Y. H.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 1986. doi: 10.1021/ja2108799. 被引量:1

共引文献58

同被引文献72

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部