摘要
为了提取更具有判决力的高光谱图像特征,并防止网络因加深导致退化,在新维度残差网络(Res2Net)和压缩激活网络(squeeze and excitation network,SENet)的基础上,提出新型多尺度特征提取模块SE-Res2Net,并设计多尺度空谱融合注意力模块.为了克服网络加深带来的退化问题,SE-Res2Net模块利用通道分组提取高光谱图像细粒度的多尺度特征得到多个不同粒度的感受野,并采用通道优化模块从通道层面量化特征图的重要性.为了进一步从空间维和光谱维同时优化特征,构建多尺度空谱融合的注意力模块,利用非对称卷积在不同尺度上挖掘不同空间位置和不同光谱维特征的关系,不但能减少计算量,还能有效地提取具有判决力的空谱融合特征,从而提高高光谱图像分类的精度.在3个公共数据集Indian Pines,University of Pavia和Grss_dfc_2013上的对比实验表明,与其他较新的深度网络相比,该方法具有更高的总体精度(overall accuracy,OA)、平均精度(average accuracy,AA)和Kappa系数.
In order to extract more discriminative features for hyperspectral image and prevent the network from degrading caused by deepening,a novel multi-scale feature extraction module SE-Res2Net based on the new dimensional residual network(Res2Net)and squeeze and exception network(SENet),and a multi-scale spectral-spatial fusion attention module is developed for hyperspectral image classification.In order to overcome the degradation problem caused by network deepening,the SE-Res2Net module uses channel grouping to extract fine-grained multi-scale features of hyperspectral images,and gets multiple re-ceptive fields of different granularity.Then,the channel optimization module is employed to quantify the importance of the feature maps at the channel level.In order to optimize the features from spatial and spec-tral dimensions simultaneously,a multi-scale spectral-spatial fusion attention module is designed to mine the relationship between different spatial positions and different spectral dimensions at different scales using asymmetric convolution,which can not only reduce the computation,but also effectively extract the dis-criminative spectral-spatial fusion features,and further improve the accuracy of hyperspectral image classi-fication.Comparison experiments on three public datasets,Indian Pines,University of Pavia and Grss_dfc_2013 show that the proposed method has higher overall accuracy(OA),average accuracy(AA)and Kappa coefficient compared to other state-of-the-art deep networks.
作者
徐沁
梁玉莲
王冬越
罗斌
Xu Qin;Liang Yulian;Wang Dongyue;Luo Bin(Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education,Anhui University,Hefei 230601;School of Computer Science and Technology,Anhui University,Hefei 230601;School of Management,Hefei University of Technology,Hefei 230009)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2021年第11期1726-1734,共9页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(61502003,61860206004,72071001,U20B2068)
安徽省自然科学基金(2008085MG226).
关键词
高光谱图像分类
多尺度特征
注意力机制
hyperspectral image classification
multi-scale feature
attention mechanism