期刊文献+

深度学习在高光谱图像分类领域的研究现状与展望 被引量:74

Deep Learning for Hyperspectral Imagery Classification: The State of the Art and Prospects
下载PDF
导出
摘要 高光谱图像(Hyperspectral imagery,HSI)分类是高光谱遥感对地观测技术的一项重要内容,在军事及民用领域都有着重要的应用.然而,高光谱图像的高维特性、波段间高度相关性、光谱混合等使得高光谱图像分类面临巨大挑战.近年来,随着深度学习新技术的出现,基于深度学习的高光谱图像分类在方法和性能上得到了突破性的进展,为其研究提供了新的契机.本文首先介绍了高光谱图像分类的背景、研究现状及几个常用的数据集,并简要概述了几种典型的深度学习模型,最后详细介绍了当前的一些基于深度学习的高光谱图像分类方法,总结了深度学习在高光谱图像分类领域中的主要作用和存在的问题,并对未来的研究方向进行了展望. Hyperspectral imagery(HSI) classification occupies an important place in the earth observation technology of hyperspectral remote sensing, and it is widely used in both military and civil fields. However, due to HSI s characteristics including high dimensionality in data, high correlation between spectrum and mixing in spectrum, HSI classification faces great challenges. In recent years, as new deep learning technology emerges, the HSI classification methods based on deep learning have achieved some breakthroughs in methodology and performance and provided new opportunities for the research of HSI classification. In this paper, we review the research background,actuality of HSI classification technologies and several common datasets. Then, we provide a brief overview of several typical deep learning models.Finally, we introduce some deep learning based HSI classification methods in detail, summarize the main function and existing problems of deep learning in HSI classification, and present some prospects for future work.
作者 张号逵 李映 姜晔楠 ZHANG Hao-Kui;LI Ying;JIANG Ye-Nan(Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129)
出处 《自动化学报》 EI CSCD 北大核心 2018年第6期961-977,共17页 Acta Automatica Sinica
基金 国家重点研发计划项目(2016YFB0502502) 预研领域基金课题(614023804016HK03002) 陕西省国际科技合作计划项目(2017KW-006) 西北工业大学博士论文创新基金(CX201816)资助~~
关键词 深度学习 高光谱图像分类 卷积神经网络 栈式自编码网络 深度置信网络 Deep learning hyperspectral imagery (HSI) classification convolutional neural network (CNN) stacked autoencoder deep belief network
  • 相关文献

参考文献4

二级参考文献150

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:254
  • 2Comaniciu D, Ramesh V, Meer P. Real-time tracking of non- rigid objects using mean shift. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recog- nition. Hilton Head Island, SC: IEEE, 2000. 142-149. 被引量:1
  • 3Risfic B, Arulampalam S, Gordon N. Beyond the Kalman filter-book review. IEEE Aerospace and EJectronic Systems Magazine, 2004, 19(7): 37-38. 被引量:1
  • 4Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. Hawaii, USA: IEEE, 2001.1-511-I-518. 被引量:1
  • 5Perez P, Hue C, Vermaak J, Gangnet M. Color-based prob- abilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002. 661-675. 被引量:1
  • 6Possegger H, Mauthner T, Bischof H. In defense of color- based model-free tracking. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 2015. 2113-2120. 被引量:1
  • 7Danelljan M, Khan F S, Felsberg M, van de Weijer J. Adap- tive color attributes for real-time visual tracking. In: Pro- ceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014. 1090-1097. 被引量:1
  • 8Ojala T, Pietikainen M, Harwood D. Performance evalua- tion of texture measures with classification based on Kull- back discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Processing. Jerusalem: IEEE, 1994. 582-585. 被引量:1
  • 9Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Un- derstanding, 2009, 113(3): 345-352. 被引量:1
  • 10Miao Q, Wang G J, Shi C B, Lin X G, Ruan Z W. A new framework for on-line object tracking based on SURF. Pat- tern Recognition, 2011, 32(13): 1564-1571. 被引量:1

共引文献414

同被引文献604

引证文献74

二级引证文献528

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部