摘要
“专利许可”折射着许可方与被许可方在技术市场中的利益博弈关系,“专利引用”映射着引用方与被引用方在技术知识场中的知识耦合关系,本文力图实证研究二者在深层次上的关联逻辑。通过分析“专利许可”发生率与“专利引用”若干特征之间的相关性,本文发现了二者间的现象关联,并在创新经济学层面进行了逻辑归因。由于“专利引用”是发生于专利授权之前的确定行为,而“专利许可”是在专利授权后有可能发生的不确定行为,所以二者间的关联逻辑可以应用于“专利许可”的预见,即基于已知的“引用”特征组合预见未知的“许可”发生可能性。本文以专利许可发生最多的通信行业为研究对象,统计了540个许可方专利权人的4985项许可专利以及其1332条前向引用信息和6876条后向引用信息;实证了“专利许可”发生率与“专利引用”若干特征之间的相关性;依据创新经济学原理,对所发现的相关性及“相关度次序”进行了归因;运用“Brovey变换法”构建了“专利许可预估指数”用于基于“引用”的“许可”预见,经实验检验为有效。
“Patent licensing”refers to the role and status of licensors and licensees in the technology market.“Patent citation”reflects the existing and potential relationships between citing and cited patents in the technical knowledge field.Thus,patent licensing and patent citation have a natural and deep-seated logical connection.Patent citation occurs before when patent rights are issued,while patent licensing may or may not occur after when patent rights are issued.It is therefore possible to predict patent licensing by analyzing the characteristic index related to patent citation.This study examines the communication industry,in which patent licensing is a common practice.We measured 4,985 licensing patents by 540 licensors and their 1,332 forward citations together with 6,876 backward citations.Next,we analyzed the correlations between the variables related to patent citation and the probability of patent licensing.We then attributed the correlations of these variables to the principles of innovation economics and constructed the patent license prediction index using the Brovey converter model,which was proved to be effective through experiments.
作者
李睿
向姝璇
黄靖芸
Li Rui;Xiang Shuxuan;Huang Jingyun(Institute for Disaster Management and Reconstruction,Sichuan University,Chengdu 610207;School of Public Administration,Sichuan University,Chengdu 610065)
出处
《情报学报》
CSSCI
CSCD
北大核心
2021年第11期1195-1208,共14页
Journal of the China Society for Scientific and Technical Information
基金
国家社会科学基金西部项目“创新经济学视野下专利引用关系的再认识及其情报学意义再研究”(20XTQ008)。
关键词
专利许可
专利引用
专利引用网络
patent licensing
patent citation
patent citation network