期刊文献+

乳腺良恶性结节磁共振成像的logistic回归分析 被引量:2

Logistic regression analysis of magnetic resonance Imaging in benign and malignant breast nodules
下载PDF
导出
摘要 目的建立乳腺良恶性结节病变磁共振成像(MRI)的logistic回归模型,为乳腺良恶性结节的鉴别提供依据。方法收集我院2019年1月至2020年12月经病理证实的146例单发乳腺结节患者的MRI资料,分析病变的MRI表现,筛选乳腺良恶性结节鉴别的MRI影像学特征,建立logistic回归模型,对各个影像学特征进行分析评价。结果对乳腺良恶性结节的单因素分析发现,其最大径线、形态、边缘、包膜、边界、毛刺征、信号特点、增强特点、增强曲线类型、淋巴结肿大、DWI信号、ADC图信号方面差异有统计学意义。经logistic回归分析筛选后,最大径线、边缘、增强曲线类型3个影像学特征进入logistic回归模型。结论以最大径线、边缘、增强曲线类型诊断参数变量建立的logistic回归模型有助于乳腺良恶性结节的鉴别诊断。 Objective To establish a logistic regression model for magnetic resonance imaging(MRI)of benign and malignant breast nodules,and provide a basis for their identification.Methods MRI data of 146 patients with solitary breast nodules confirmed by pathology in our hospital from January 2019 to December 2020 were collected.Through analyzing the MRI manifestations of the lesions,screening the MRI imaging features of the differentiation of benign and malignant breast nodules,a logistic regression model was established,and the various imaging features were analyzed and evaluated.Results Univariate analysis of benign and malignant breast nodules showed statistically significant differences in their maximum diameter,shape,edge,capsule,boundary,burr sign,signal characteristics,enhancement characteristics,enhancement curve type,lymph node enlargement,DWI signal,and ADC signal.After logistic regression analysis,three imaging features,including maximum diameter line,edge and enhancement curve type,were selected into the logistic regression model.Conclusion The logistic regression model based on the maximum diameter line,edge and enhancement curve is helpful for the differential diagnosis of benign and malignant breast nodules.
作者 邢成颜 巴成慧 高文鑫 郭兰田 姜兴岳 许昌 XING Chengyan;BA Chenghui;GAO Wenxin;GUO Lantian;JIANG Xingyue;XU Chang(Department of Radiology,Binzhou Medical University Hospital,Binzhou 256603,Shandong,P.R.China)
出处 《滨州医学院学报》 2021年第5期361-365,共5页 Journal of Binzhou Medical University
关键词 乳腺结节 磁共振成像 LOGISTIC模型 鉴别诊断 breast nodule magnetic resonance imaging logistic model differential diagnosis
  • 相关文献

参考文献11

二级参考文献72

共引文献145

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部